-Рубрики

 -Цитатник

Словари и переводчики вязальных терминов ☆ с ин. языков - (0)

Словари и переводчики вязальных терминов ☆ с ин. языков П...

Hitomi_Shida_Knit_Magazine - (0)

Hitomi Shida - великий мастер ажурных узоров и кос (анонс _сег -8.04.2017 добавлен ещё один альбом с...

Альбом "Let’s Knit series NV80537 2017" - (0)

Альбом "Let’s Knit series NV80537 2017"   Название: Let’s Knit ...

Альбом "Knitting from neck №1 2017" - (0)

Альбом "Knitting from neck №1 2017" Название: Knitting from neck №1 2017 Издательство: Asahi Shi...

Альбом "Stylish - Spring and Summer knit (2017 / Japan)"/"Стильный-весна-лето 2017/ - (0)

Альбом "Stylish - Spring and Summer knit (2017 / Japan)"/"Стильный-весна-лето 2017/ Журнал по вяз...

 -Приложения

  • Перейти к приложению Я - фотограф Я - фотографПлагин для публикации фотографий в дневнике пользователя. Минимальные системные требования: Internet Explorer 6, Fire Fox 1.5, Opera 9.5, Safari 3.1.1 со включенным JavaScript. Возможно это будет рабо
  • Перейти к приложению Всегда под рукой Всегда под рукойаналогов нет ^_^ Позволяет вставить в профиль панель с произвольным Html-кодом. Можно разместить там банеры, счетчики и прочее
  • Перейти к приложению Онлайн-игра "Empire" Онлайн-игра "Empire"Преврати свой маленький замок в могущественную крепость и стань правителем величайшего королевства в игре Goodgame Empire. Строй свою собственную империю, расширяй ее и защищай от других игроков. Б
  • Перейти к приложению Стена СтенаСтена: мини-гостевая книга, позволяет посетителям Вашего дневника оставлять Вам сообщения. Для того, чтобы сообщения появились у Вас в профиле необходимо зайти на свою стену и нажать кнопку "Обновить
  • Перейти к приложению Создание аватар Создание аватарСервис для создания аватар в режиме онлайн. Позволяет вырезать из большой фотографии свою мордочку и сделать из неё аватару :) Есть возможность сразу же установить аватару в качестве своей основной.

 -Фотоальбом

Посмотреть все фотографии серии
23:02 22.12.2015
Фотографий: 40
Посмотреть все фотографии серии БИСЕР.
БИСЕР.
18:01 26.12.2014
Фотографий: 98

 -Я - фотограф

 -Поиск по дневнику

Поиск сообщений в TannyJurnalova0601

 -Подписка по e-mail

 

 -Интересы

жизнь рукоделие природа люди

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 09.10.2014
Записей:
Комментариев:
Написано: 3404


Брайан Грин Ткань космоса: пространство,время и структура реальности

Четверг, 21 Мая 2015 г. 22:21 + в цитатник
 
123
   Противоречие между этим заключением и тем, что мы нашли из размышлений о воздухе, заключенном в пластиковом контейнере (когда мы нашли, что количество энтропии пропорционально объему контейнера, а не площади его поверхности), легко ликвидировать: поскольку мы предполагали, что воздух в контейнере распределен равномерно, рассуждения о контейнере игнорируют гравитацию; вспомним, когда действует гравитация, вещи слипаются. Пренебрежение гравитацией оправдано, когда малы плотности, но когда вы рассматриваете большую энтропию, плотности велики, гравитация действует, и рассуждения о пластиковых контейнерах больше не применимы. Вместо этого, такие экстремальные условия требуют основанных на гравитации расчетов Бекенштейна и Хокинга с заключением, что максимальный энтропийный потенциал области пространства пропорционален ее площади, а не ее объему. 
   Ну ладно, но почему мы должны беспокоиться? Имеются две причины. 
   Первая, ограничение энтропии дает еще одну подсказку, что ультрамикроскопическое пространство имеет атомистическую структуру. Подробно, Бекенштейн и Хокинг нашли, что если вы представите нарисованный на горизонте событий образец шахматной доски с каждым квадратом, равным длине Планка на длину Планка (так что такой "планковский квадрат" имеет площадь около 10–66 квадратного сантиметра), тогда энтропия черной дыры равна числу таких квадратов, которые можно расположить на ее поверхности.[4]Тяжело не заметить заключение, на которое сильно намекает этот результат: каждый планковский квадрат есть минимальная, фундаментальная единица пространства, и каждый несет минимальную, отдельную единицу энтропии. Это наводит на мысль, что нет ничего, даже в принципе, что могло бы иметь место внутри планковского квадрата, поскольку любая такая активность поддерживает беспорядок, а потому планковский квадрат мог бы иметь больше, чем одну единицу энтропии, найденную Бекенштейном и Хокингом. Итак, еще раз, с совершенно другой точки зрения мы пришли к понятию простейшей пространственной сущности.[5] 
   Вторая, для физика верхний предел энтропии, которая может существовать в области пространства, является критической, едва ли не священной величиной. Чтобы понять, почему, представьте, что вы работаете на поведенческого психиатра и ваша работа заключается в поддержании детальной, момент за моментом записи взаимодействий внутри группы чрезвычайно активных маленьких детей. Каждое утро вы молитесь, чтобы дневная группа хорошо себя вела, поскольку чем больший бедлам создают дети, тем тяжелее ваша работа. Причина интуитивно понятна, но стоит высказать ее явно: чем более разупорядочены дети, тем больше вещей вы должны удержать во внимании. Вселенная представляется физику примерно с такой же проблемой. Фундаментальная физическая теория предназначена для описания всего, что происходит – или могло бы происходить, даже в принципе, – в данной области пространства. И, как и с детьми, чем больше беспорядка область может содержать, – даже в принципе, – тем больше вещей теория должна быть способна отслеживать. Таким образом, максимум энтропии, которую может содержать область, обеспечивает простой, но острый лакмусовый тест: физики ожидают, что в полном смысле слова фундаментальная теория есть та, которая в полной мере подходит к максимуму энтропии в любой данной пространственной области. Теория должна быть столь тесно настроена на природу, что ее максимальная способность отслеживать беспорядок должна быть в точности равна максимальному беспорядку, который область, возможно, может содержать, не больше и не меньше. 
   Дело в том, что если заключение на основе пластиковых контейнеров имеет неограниченную применимость, фундаментальная теория должна была бы иметь способность объяснять объемное значение беспорядка в любой области. Но поскольку это рассуждение неверно, когда включена гравитация, – и поскольку фундаментальная теория должна включать гравитацию, – мы узнаем, что фундаментальная теория должна быть в состоянии объяснять только поверхностное значение беспорядка в любой области. А, как мы показали на паре численных примеров несколькими абзацами выше, чем больше область, тем более малым становится последнее по сравнению с первым. 
   Таким образом, результат Бекенштейна и Хокинга говорит нам, что теория, которая включает гравитацию, в некотором смысле проще, чем теория, которая не включает. Имеется меньше "степеней свободы" – меньше вещей, которые могут изменяться и потому давать вклад в беспорядок, – которые теория должна описывать. Это интересный результат сам по себе, но если мы проследуем по той же линии рассуждений на один шаг дальше, окажется, что он говорит нам нечто чрезвычайно странное. Если максимум энтропии в любой заданной области пространства пропорционален площади поверхности области, а не ее объему, то, вероятно, правильные, фундаментальные степени свободы – отличительные признаки, которые имеют потенциал давать вклад в этот беспорядок, – на самом деле располагаются на поверхности области, а не в ее объеме. Это значит, может быть, реальные физические процессы вселенной имеют место на тонкой удаленной поверхности, которая окружает нас, и все, что мы видим и ощущаем, есть просто проекция этих процессов. Это значит, может быть, вселенная является до некоторой степени похожей на голограмму. 
   Это необычная идея, но как мы сейчас обсудим, она имеет недавно полученную существенную поддержку. 
 
   Является ли вселенная голограммой? 
Рубрики:  ДЖЕЙН_РОБЕРТС_СЕТХ/Брайан Грин Ткань космоса: Пространство, время и с
ТЕХНІЧНИЙ
Предметы картинки Предметы картинки
ЦІКАВО ЗНАТИ
ПРИРОДА ЗЕМЛЯ
instrument-animatsionnaya-kartinka-0054
ЕНЦИКЛОПЕДІЯ
ВСЕСВІТ 2015
ФІЗИКА,АСТРОФІЗИКА,МЕХАНІКА
planeta-animatsionnaya-kartinka-0005 instrument-animatsionnaya-kartinka-0054
Метки:  

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку