-Рубрики

 -Цитатник

Словари и переводчики вязальных терминов ☆ с ин. языков - (0)

Словари и переводчики вязальных терминов ☆ с ин. языков П...

Hitomi_Shida_Knit_Magazine - (0)

Hitomi Shida - великий мастер ажурных узоров и кос (анонс _сег -8.04.2017 добавлен ещё один альбом с...

Альбом "Let’s Knit series NV80537 2017" - (0)

Альбом "Let’s Knit series NV80537 2017"   Название: Let’s Knit ...

Альбом "Knitting from neck №1 2017" - (0)

Альбом "Knitting from neck №1 2017" Название: Knitting from neck №1 2017 Издательство: Asahi Shi...

Альбом "Stylish - Spring and Summer knit (2017 / Japan)"/"Стильный-весна-лето 2017/ - (0)

Альбом "Stylish - Spring and Summer knit (2017 / Japan)"/"Стильный-весна-лето 2017/ Журнал по вяз...

 -Приложения

  • Перейти к приложению Я - фотограф Я - фотографПлагин для публикации фотографий в дневнике пользователя. Минимальные системные требования: Internet Explorer 6, Fire Fox 1.5, Opera 9.5, Safari 3.1.1 со включенным JavaScript. Возможно это будет рабо
  • Перейти к приложению Всегда под рукой Всегда под рукойаналогов нет ^_^ Позволяет вставить в профиль панель с произвольным Html-кодом. Можно разместить там банеры, счетчики и прочее
  • Перейти к приложению Онлайн-игра "Empire" Онлайн-игра "Empire"Преврати свой маленький замок в могущественную крепость и стань правителем величайшего королевства в игре Goodgame Empire. Строй свою собственную империю, расширяй ее и защищай от других игроков. Б
  • Перейти к приложению Стена СтенаСтена: мини-гостевая книга, позволяет посетителям Вашего дневника оставлять Вам сообщения. Для того, чтобы сообщения появились у Вас в профиле необходимо зайти на свою стену и нажать кнопку "Обновить
  • Перейти к приложению Создание аватар Создание аватарСервис для создания аватар в режиме онлайн. Позволяет вырезать из большой фотографии свою мордочку и сделать из неё аватару :) Есть возможность сразу же установить аватару в качестве своей основной.

 -Фотоальбом

Посмотреть все фотографии серии
23:02 22.12.2015
Фотографий: 40
Посмотреть все фотографии серии БИСЕР.
БИСЕР.
18:01 26.12.2014
Фотографий: 98

 -Я - фотограф

 -Поиск по дневнику

Поиск сообщений в TannyJurnalova0601

 -Подписка по e-mail

 

 -Интересы

жизнь рукоделие природа люди

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 09.10.2014
Записей:
Комментариев:
Написано: 3404


Брайан Грин Элегантная Вселенная Суперструны, скрытые размерности и поиски окончательной теории

Пятница, 15 Мая 2015 г. 22:27 + в цитатник
 
50
   Вспомним, что открытые физиками элементарные частицы разделяются на три семейства с идентичной организацией, при этом частицы каждого следующего семейства имеют всё бо́льшую массу. Вопрос, на который до появления теории струн не было ответа, звучит так: «С чем связано существование семейств и почему семейств три?» Вот как отвечает на него теория струн. Типичное многообразие Калаби–Яу содержит отверстия, похожие на те, которые имеются в центре граммофонной пластинки, баранке или многомерной баранке, показанной на рис. 9.1. На самом деле, в многомерных пространствах Калаби–Яу могут иметься отверстия самых различных типов, в том числе отверстия в нескольких измерениях («многомерные отверстия»), но основную идею можно видеть и на рис. 9.1. Канделас, Горовиц, Строминджер и Виттен провели тщательное исследование влияния этих отверстий на возможные моды колебаний струн, и вот что они установили.
   Рис. 9.1. Баранка (или тор) и её кузены — торы с ручками
   С каждым отверстием в многообразии Калаби–Яу связано семейство колебаний с минимальной энергией. Поскольку обычные элементарные частицы должны соответствовать модам колебаний с минимальной энергией, существование нескольких отверстий, похожих на отверстия в многомерной баранке, означает, что моды колебаний струн распадаются на несколько семейств. Если свёрнутое многообразие Калаби–Яу имеет три отверстия, мы обнаружим три семейства элементарных частиц.{83} Таким образом, теория струн провозглашает, что наблюдаемое экспериментально разделение на семейства не является необъяснимой особенностью, имеющей случайное или божественное происхождение, а объясняется числом отверстий в геометрической форме, которую образуют дополнительные измерения! Такие результаты заставляют сердца физиков биться учащённо.
   Вам может показаться, что число отверстий в свёрнутых измерениях планковских размеров — результат, стоящий поистине на вершине скалы современной физики, — может теперь столкнуть пробный камень эксперимента вниз, в направлении доступных нам сегодня энергий. В конце концов, экспериментаторы могут определить (на самом деле, уже определили) число семейств частиц: три. К несчастью, число отверстий в каждом из десятков тысяч известных многообразий Калаби–Яу изменяется в широких пределах. Некоторые имеют три отверстия. Но другие имеют четыре, пять, двадцать пять и т. д. — у некоторых число отверстий достигает даже 480. Проблема состоит в том, что в настоящее время никто не знает, как определить из уравнений теории струн, какое из многообразий Калаби–Яу определяет вид дополнительных пространственных измерений. Если бы мы смогли найти принцип, который позволяет выбрать одно из многообразий Калаби–Яу из огромного числа возможных вариантов, тогда, действительно, камень с вершины загромыхал бы по склону в сторону лагеря экспериментаторов. Если бы конкретное пространство Калаби–Яу, выделяемое уравнениями теории, имело три отверстия, мы бы получили от теории струн впечатляющее «послесказание», объясняющее известную особенность нашего мира, которая в ином случае выглядит совершенно мистической. Однако поиск принципа выбора многообразия Калаби–Яу пока остаётся нерешённой проблемой. Тем не менее, и это важно, мы видим, что теория струн способна в принципе дать ответ на эту загадку физики элементарных частиц, что само по себе уже представляет значительный прогресс.
   Число семейств частиц представляет собой лишь одно из экспериментальных следствий, вытекающих из геометрической формы дополнительных измерений. Благодаря влиянию на возможные моды колебаний струн, дополнительные размерности оказывают влияние на детальные свойства частиц-переносчиков взаимодействия и частиц вещества. Ещё один важный пример, продемонстрированный в работе Строминджера и Виттена, состоит в том, что массы частиц в каждом семействе зависят от того — будьте внимательны, это тонкий момент, — как пересекаются и накладываются друг на друга границы различных многомерных отверстий в многообразии Калаби–Яу. Это явление с трудом поддаётся визуализации, но основная идея состоит в том, что когда струны колеблются в дополнительных свёрнутых измерениях, расположение отверстий и то, как многообразие Калаби–Яу обворачивается вокруг них, оказывает прямое воздействие на возможные моды резонансных колебаний. Детали этого явления довольно сложны и, на самом деле, не столь существенны; важно то, что как и в случае с числом семейств, теория струн даёт основу для ответа на вопросы, по которым предыдущие теории хранили полное молчание, например, почему электрон и другие частицы имеют те массы, которые они имеют. Однако эти вопросы также требуют знания того, какой вид имеют дополнительные измерения, свёрнутые в пространства Калаби–Яу.
   Сказанное выше дало некоторое представление о том, каким образом теория струн может однажды объяснить приведённые в табл. 1.1 свойства частиц вещества. Физики, работающие в теории струн, верят, что таким же образом смогут однажды объяснить и свойства перечисленных в табл. 1.2 частиц, переносящих фундаментальные взаимодействия. Когда струны закручиваются и вибрируют в развёрнутых и свёрнутых измерениях, небольшая часть их обширного спектра колебаний представлена модами, соответствующими спину 1 или 2. Эти моды являются кандидатами на роль фундаментальных взаимодействий. Независимо от конфигурации пространства Калаби–Яу, всегда имеется одна безмассовая мода колебаний, имеющая спин 2; мы идентифицируем эту моду как гравитон. Однако точный список частиц-переносчиков взаимодействия, имеющих спин 1, — их число, интенсивность взаимодействия, которое они передают, их калибровочные симметрии очень сильно зависят от геометрической формы свёрнутых измерений. Таким образом, повторим, мы пришли к пониманию того, что теория струн даёт схему, объясняющую существующий набор частиц, переносящих взаимодействие, т. е. объясняющую свойства фундаментальных взаимодействий. Однако, не зная точно, в какое многообразие Калаби–Яу свёрнуты дополнительные измерения, мы не можем сделать определённых предсказаний или «послесказаний» (выходящих за рамки замечания Виттена о «послесказании» гравитации).
   Почему мы не можем установить, какое из многообразий Калаби–Яу является «правильным»? Большинство теоретиков относит это к неадекватности теоретических инструментов, используемых в теории струн. В главе 12 мы покажем более подробно, что математический аппарат теории струн столь сложен, что физики способны выполнить только приближённые вычисления в рамках формализма, известного под названием теории возмущений. В этой приближённой схеме все возможные многообразия Калаби–Яу выглядят равноправными; ни одно из них не выделяется уравнениями. Поскольку физические следствия теории струн существенно зависят от точной формы свёрнутых измерений, не имея возможности выбрать единственное пространство Калаби–Яу из многих возможных, нельзя сделать определённых заключений, поддающихся экспериментальной проверке. Современные исследования нацелены на разработку теоретических методов, выходящих за рамки приближённого подхода, в надежде, что помимо других выгод это выделит единственное многообразие Калаби–Яу для дополнительных измерений. В главе 13 мы рассмотрим прогресс, достигнутый в этом направлении.

Перебирая возможности

   Вы можете и так поставить вопрос: пусть неизвестно, какое из пространств Калаби–Яу выбирает теория струн, но позволяет ли какой-нибудь выбор получить физические характеристики, которые согласуются с наблюдаемыми? Другими словами, если мы рассчитаем физические характеристики, которые даёт каждое возможное многообразие Калаби–Яу, и соберём их в один гигантский каталог, сможем ли мы найти среди них то, которое соответствует действительности? Это важный вопрос, однако есть две серьёзные причины, по которым на него нельзя дать исчерпывающего ответа.
   Разумно было бы начать исследование, ограничившись только теми пространствами Калаби–Яу, которые дают три семейства частиц. Это значительно сокращает список возможных вариантов. Однако обратите внимание: мы можем деформировать тор с ручками из одной формы во множество других — на самом деле, в бесконечное множество — без изменения числа отверстий. На рис. 9.2 мы показали одну такую деформацию формы, приведённой в нижней части рис. 9.1. Аналогично можно взять пространство Калаби–Яу с тремя отверстиями и плавно изменить его форму без изменения числа отверстий, опять же через бесконечное число промежуточных форм. (Когда выше мы говорили о десятках тысяч многообразий Калаби–Яу, мы уже сгруппировали все те многообразия, которые могут быть преобразованы друг в друга путём таких плавных деформаций, и учитывали такие группы как одно пространство Калаби–Яу.) Проблема состоит в том, что физические свойства колебаний струн, а также соответствующие им массы и константы взаимодействий, очень сильно зависят от подобных детальных изменений вида многообразия, а у нас, опять же, нет критериев для того, чтобы отдать одной из этих конкретных возможностей предпочтение перед другими. И неважно, сколько аспирантов усадят за эту работу профессора физики, невозможно перебрать все альтернативы, соответствующие бесконечному списку различных пространств.
   Рис. 9.2. Мы можем различными способами изменить форму тора с ручками, не меняя количества отверстий в нём; здесь показан один из таких способов
   Осознание этого побудило специалистов по теории струн исследовать физику, порождаемую выборкой из возможных многообразий Калаби–Яу. Но даже в этом случае ситуация остаётся непростой. Приближённые уравнения, используемые учёными в настоящее время, имеют недостаточную мощность для того, чтобы получить полную и точную физическую картину, которую даёт выбранное многообразие Калаби–Яу. Эти уравнения позволяют значительно продвинуться вперёд в отношении приблизительной оценки свойств колеблющейся струны, которые, как мы надеемся, будут соответствовать наблюдаемым частицам. Но точные и определённые физические вопросы, подобные тому, какова масса электрона или интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближённые схемы. Вспомните главу 6 и пример с «Верной ценой», где говорилось, что «естественным» мерилом энергии в теории струн является планковская энергия, и только благодаря необычайно точному механизму сокращений теория струн способна дать моды колебаний, массы которых близки к массам известных частиц вещества и частиц, переносящих взаимодействие. Искусные сокращения требуют точных расчётов, поскольку даже небольшие погрешности могут оказать большое влияние на результат. Как мы увидим в главе 12, в середине 1990-х гг. физики смогли добиться значительного прогресса в выходе за рамки современных приближённых уравнений, хотя сделать предстоит ещё немало.
Рубрики:  ДЖЕЙН_РОБЕРТС_СЕТХ/Брайан Грин Элегантная Вселенная Суперструны
ТЕХНІЧНИЙ
Предметы картинки Предметы картинки
ЦІКАВО ЗНАТИ
ПРИРОДА ЗЕМЛЯ
instrument-animatsionnaya-kartinka-0054
ЕНЦИКЛОПЕДІЯ
ВСЕСВІТ 2015
ФІЗИКА,АСТРОФІЗИКА,МЕХАНІКА
planeta-animatsionnaya-kartinka-0005 instrument-animatsionnaya-kartinka-0054
Метки:  

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку