-Рубрики

 -Метки

covid-19 iter lhc nica ulakisa xfel «большой серпухов» «известия» «курчатовский институт» «мк» «научная россия» «протом» «светлый город» «ускоритель» В.Высоцкий а.агеев а.баженов а.бугорский а.булатов а.ваганов а.васильев а.васянин а.воробьёв а.голубев а.евсиков а.зайцев а.коган а.колесников а.колотовкин а.лиходед а.логунов а.мысник а.рохман а.сахаров а.степанец а.хамаза б.арбузов б.булдыгин б.ельцин б.серебряков без событий бозон хиггса большой серпухов в.балакин в.борисов в.волчков в.губарев в.дмитровский в.каминский в.михайлов в.михненков в.петров в.путин в.романенко в.рубаков в.рыбальченко в.татаринцев в.тепляков в.троицкий вакцинация г. дерновой г.дерновой г.красников г.мущак г.рыбаков г.трубников гнтс д.медведев день науки дубна е.клименко е.куракина е.мочалова е.пичугина запорожская аэс заявление сжп и.вишняков и.курчатов и.маск ифвэ ияф со ран коронавирус коррупция ксп «мельница» л.ландау л.ландсберг л.разумова л.рашевская л.севрюкова л.соловьёв л.фоменко л.ширшов лесной бульвар м.ковальчук м.мишустин м.несмелов м.шишков магатэ минатом минздрав мо мособлдума музей протвино н.бакатура н.бочко н.веденеева н.лескова н.марченков н.поправко н.тюрин наукоград кольцово ниц «ки» ниц «курчатовский институт» нтс ифвэ о.ломакин о.чепурная объединение наукоградов оияи опп п.головнёв п.логачев п.шляпников пандемия политика проект «сила» протвино протонная терапия публичные слушания пущино р.фурцев росатом рост заболеваемости с.вольховский с.герштейн с.денисов с.иванов с.кириенко с.клименко с.кудряшов с.поярков с.рогозина с.токарев серпухов скиф слияние наукоградов смертность совет по науке спецоперация стандартная модель статус наукограда статус наукоградов т.кулешова т.пичугина токамак тоннель унк у-70 у.кремлёв унк ф.ёч футбол в катаре церн цкп «скиф» чернобыль ю.ильин ю.прокошкин ю.романенко ю.рябов ядерная медицина

 -Поиск по дневнику

Поиск сообщений в Rewiever

 -Подписка по e-mail

 

 -Сообщества

Участник сообществ (Всего в списке: 1) ПОЛИТИКА

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 28.06.2006
Записей: 2109
Комментариев: 100
Написано: 2404

Записи с меткой iter

(и еще 35 записям на сайте сопоставлена такая метка)

Другие метки пользователя ↓

iter lhc nica «большой серпухов» «мк» «ускоритель» а.баженов а.бугорский а.ваганов а.воробьёв а.голубев а.зайцев а.колесников а.колотовкин а.логунов а.рохман бозон хиггса большой серпухов в.балакин в.борисов в.дмитровский в.каминский в.петров в.путин в.романенко в.рыбальченко вакцинация г. дерновой г.дерновой г.мущак г.рыбаков г.трубников гнтс д.медведев е.клименко е.куракина е.мочалова запорожская аэс и.вишняков и.курчатов и.маск ифвэ ияф со ран коронавирус л.разумова л.соловьёв л.ширшов лесной бульвар м.ковальчук м.мишустин м.шишков н.веденеева н.марченков н.тюрин ниц «ки» ниц «курчатовский институт» нтс ифвэ о.ломакин объединение наукоградов оияи пандемия проект «сила» протвино пущино р.фурцев росатом с.вольховский с.герштейн с.денисов с.иванов с.токарев серпухов скиф спецоперация стандартная модель статус наукограда т.пичугина у.кремлёв унк церн цкп «скиф» чернобыль ю.ильин ю.прокошкин ю.романенко ядерная медицина

Стоит ли того запуск термоядерного реактора?

Дневник

Четверг, 30 Мая 2024 г. 23:57 + в цитатник
Под искусственным солнцем
Почему растут вложения в термоядерную энергетику
 
Власти развитых стран вновь обратили внимание на термоядерные технологии, необходимые для создания практически безграничного зеленого источника электроэнергии. За прошлый год объем вложений только в частную термоядерную индустрию вырос на $1,4 млрд, до $6,21 млрд. В РФ затраты на прототип первого опытно-промышленного термоядерного реактора оцениваются в более 130 млрд руб. “Ъ” разбирался в перспективах инвестиций в технологию.
termojad_sx2 (294x200, 41Kb)Энергетический кризис, с которым мир столкнулся два года назад, заставил власти развитых стран вернуться к идее создания «бесконечного» источника энергии — термоядерного реактора. В 2023 году Германия, Япония, Великобритания и ряд других стран запустили новые программы поддержки отрасли термоядерных технологий. А власти США утвердили на 2024 год рекордный объем финансирования в размере $1,5 млрд.
В Fusion Industry Association (FIA) считают, что в отрасли термоядерных разработок происходит «технологический взрыв». Количество термоядерных стартапов за год выросло на треть, до 43 штук, более половины расположены в США, говорится в отчете FIA. Объем вложений в частную термоядерную индустрию за 2023 год увеличился на $1,4 млрд, до $6,21 млрд. Среди инвесторов — Eni, Chevron, Equinor и Mitsubishi, Билл Гейтс, Джефф Безос и Джон Доер. Инвестиции в стартапы со стороны государств удвоились до $271 млн.
 
Между лазером и токамаком
Термоядерный синтез — это слияние двух легких атомных ядер, в результате чего выделяется огромное количество энергии. Ученые, как правило, объединяют два атома водорода — дейтерий и тритий. Такая реакция протекает в звездах, но в земных условиях запустить и удержать ее крайне сложно. Для синтеза нужно разогреть ядра до чрезвычайно высоких температур (свыше 100 млн градусов) в ограниченном пространстве. Ученые за более чем 80 лет исследований научились создавать высокотемпературную плазму в лабораторных условиях, но удержать её удается лишь на срок менее одной минуты.
Сейчас в 26 странах, по данным МАГАТЭ, существуют 99 работающих термоядерных экспериментальных установок, большая часть из которых в Японии, США, России и Китае. Наиболее известные и успешные действующие аппараты — KSTAR в Южной Корее, EAST в Китае, JT-60U в Японии. Строятся 13 установок, еще 33 — планируются. Большинство термоядерных аппаратов принадлежит государствам. Но в мире работает 9 частных установок, еще 4 — строятся, а 14 — на стадии планирования.

world_tkmks2 (640x201, 159Kb)
В мире конкурируют два типа конструкций: токамаки и стеллараторы с большими магнитами для удержания горячей плазмы и установки с использованием мощных лазеров для нагрева топлива. Сейчас львиная доля работающих установок в мире — токамаки. Лазерные установки активно развивают США и Япония. В России, как говорят источники “Ъ”, делают ставку на развитие токамака как модели «наиболее успешной и подходящей для энергетических задач».
Половина частных компаний, опрошенных FIA, рассчитывают начать производство термоядерных киловатт-часов в середине 2030-х годов. Но пока в такие оптимистичные прогнозы верится с трудом. До сих пор за все время испытаний ни на одной установке в мире не удалось достичь показателей, необходимых для перехода к строительству демонстрационных реакторов с выдачей электроэнергии в сеть. В частности, ученые по-прежнему тратят на разогрев плазмы больше энергии, чем получают в результате слияния ядер.
Постоянно откладывается и запуск самого крупного и известного в мире экспериментального токамака ITER (International Thermonuclear Experimental Reactor). Строительство объекта на юге Франции началось в 2010 году, сборка деталей — в 2020 году. Недавно в ITER признали, что запуск не произойдет в 2025 году, как планировалось, а бюджет придется пересматривать. Исходно предполагалось, что ITER будет стоить около $5 млрд, но бюджет уже превысил $22 млрд.
Члены ITER — Россия, Китай, США, Южная Корея, Индия, Япония и ЕС (через Euratom, регулятора атомной отрасли в ЕС). ЕС несет большую часть затрат на стройку (45,6%), а остальные участники — по 9,1%, но взносы в проект происходят в основном за счет производства деталей. Власти Великобритании, чье членство в Euratom завершилось после выхода из ЕС, думают покинуть проект, чтобы потратить свой взнос в размере $749 млн на конкурирующий прототип токамака, писал Bloomberg. Очевидно, британские власти потеряли веру в успешность этого долгостроя, полагают опрошенные “Ъ” эксперты.
 
Россия возвращается в гонку
Самые громкие и яркие научные термоядерные открытия в России происходили во времена Советского Союза. После развала СССР отрасль переживала трудные времена, поскольку остановилось финансирование исследований. По данным МАГАТЭ, сейчас в РФ работают шесть токамаков. Установки расположены в Курчатовском институте, в Троицком институте инновационных и термоядерных исследований, санкт-петербургском Физико-техническом институте имени Иоффе, Санкт-Петербургском госуниверситете. Еще три экспериментальные магнитные ловушки находятся в Институте ядерной физики имени Будкера СО РАН.
Самая современная установка — токамак Курчатовского института Т-15МД, запущенный весной 2021 года. Одновременно стартовала реализация федерального проекта по развитию термоядерного синтеза в рамках комплексной программы «Развитие техники и технологии научных исследований в области атомной энергии». Со старта программы в 2021 году по 2023 год из бюджета на развитие проекта выдано около 78 млрд руб. субсидий, собственных средств «Росатома» вложено около 300 млрд руб., сообщили “Ъ” в госкорпорации. Там обсуждают с правительством экономические параметры продолжения проекта до 2030 года.
Продолжение финансирования необходимо в том числе для строительства токамака с реакторными технологиями (ТРТ) в Троицке. ТРТ станет прототипом первого российского опытно-промышленного термоядерного реактора. Плазма в ТРТ сможет разогреваться до 150 млн градусов, говорят в «Росатоме». Стоимость проекта, по данным “Ъ”, может превысить 130 млрд руб.
.
world_energy2 (640x202, 121Kb)
 
Неопределенные промышленные перспективы
Причина медленного развития термоядерных технологий — слабое финансирование отрасли, утверждают опрошенные “Ъ” эксперты. Директор аналитического направления центра «Энерджинет» Игорь Чаусов указывает, что за 2023 год в разные сферы низкоуглеродной энергетики — от ВИЭ до электротранспорта — в мире вложено почти $1,8 трлн. На инвестиции в частную индустрию термоядерных технологий приходится менее 1% от этой суммы, этого недостаточно для новой сферы на стадии исследований и экспериментов, подчеркивает эксперт.
Пока аналитики и государства не рассматривают термоядерные реакторы как возможный реальный источник энергии в ближайшем будущем, в том числе из-за невозможности оценить экономическую эффективность такой установки. В ближайшие четверть века человечество будет использовать уже отработанные технологии. По прогнозу «Яков и партнеры», к 2050 году мощность ветряных и солнечных станций вырастет почти втрое, а доля ископаемых источников все еще будет превышать 50%. На первый план выйдут вопрос интеграции источников энергии в общую электросеть, а также развитие технологий хранения энергии и повышение энергоэффективности.
Термоядерная энергетика остается «научно-исследовательским направлением с неопределенными промышленными перспективами», считает Сергей Роженко из Kept. По его мнению, технология имеет «существенно более неопределенные» коммерческие перспективы, чем даже водородная энергетика: «Термоядерная энергетика может повторить судьбу ряда других энергетических технологий, так и не вышедших из лабораторий. Объем инвестиций в отрасль тому подтверждение: $6 млрд — это стоимость дорогой лаборатории, но даже близко не промышленной установки». Так, уточняет господин Роженко, общий объем вложений в частный сектор термоядерных технологий — это примерно четверть стоимости строительства АЭС в Египте (4,8 ГВт) на отработанной технологии ВВЭР-1200.
 
Драйвер развития
Несмотря на активное участие в термоядерных исследованиях, энергетика России, по мнению, собеседников “Ъ”, еще долго не будет нуждаться в принципиально новых источниках электроэнергии. Партнер «Яков и партнеры» Антон Порядин считает, что структура энергобаланса РФ в ближайшем будущем сильно не изменится. По его прогнозам, доля природных ископаемых может снизиться с 85% до 75%, атомной генерации — вырасти за счет станций малой мощности, а солнечная и ветряная энергетика будут развиваться в удаленных регионах с благоприятным климатом. Газ надолго останется основным источником энергии, добавляет эксперт.
Единственная необходимость развития термоядерной энергетики в России — поддержка этой области науки, полагает Игорь Чаусов. РФ обладает немалым заделом по многим критически важным для термоядерной энергетики технологиям, в том числе сверхпроводникам и новым материалам, сложным приборам и датчикам, что позволяет рассматривать термоядерную энергетику как сферу, в которой Россия может претендовать на технологическое лидерство в конце XXI—начале XXII века.
Концепция использования «бесконечной и бесплатной» энергии термоядерного синтеза выглядит привлекательно, говорит Сергей Роженко. Однако есть вероятность, что человечество никогда не сможет решить проблемы термоядерных технологий, одна из которых состоит в отсутствии материалов, способных удерживать высокотемпературную плазму и выдерживать длительную бомбардировку нейтронами. Без принципиального прорыва в физике, по его мнению, вряд ли стоит надеяться на запуск термоядерного реактора.
 
Опубликовано: Полина Смертина, “КоммерсантЪ” 
 

Серия сообщений "Наука /продолжение - 4/":
Часть 1 - Фундаментальной ядерной физике - развиваться
Часть 2 - «Возвращались со словами: В ИЯФ – лучше!»
...
Часть 6 - Названы лауреаты премии Померанчука-2024
Часть 7 - Дайте фундаментальной науке хотя бы 0,4% ВВП!
Часть 8 - Стоит ли того запуск термоядерного реактора?
Часть 9 - В Дубне готовится совместный эксперимент SPD
Часть 10 - Министр науки РФ посетил строительство «СКИФ»
Часть 11 - Отставание от графика при строительстве СКИФ
Часть 12 - Нуклотрон ОИЯИ - космической радиобиологии
Часть 13 - К вопросу деградации в имперской науке


Метки:  

Полвека первым токамакам. Плазмы пока нет...

Дневник

Пятница, 24 Мая 2024 г. 21:06 + в цитатник
«Нельзя прогнозировать экономический эффект нереализованного достижения»
 
О развитии термоядерной энергетики в России и в мире “Ъ” рассказал директор направления научно-технических исследований и разработок «Росатома» Виктор Ильгисонис.
 
— Зачем во всем мире многие десятки лет работают над созданием термоядерной энергетики?
— Термоядерный синтез необходим для экологичного производства электроэнергии. Последние годы человечество стало бороться за сокращение выбросов парниковых газов. Для этого есть возобновляемые источники энергии: ветряки, солнечные батареи и другие. Но их применение имеет особенности и ограничения, из-за чего, например, ядерная энергетика снова выходит на первый план.
АЭС — очень концентрированный (в смысле энергосодержания топлива) источник производства энергии. Если вы сжигаете 1 кг дров, то получаете 10–15 МДж, бензина или газа — 40–50 МДж. Но если вы возьмете 1 кг ядерного топлива, то из него вы получите несколько миллионов мегаджоулей. А из килограмма термоядерного горючего вы получите сотни миллионов мегаджоулей.
 
— Почему нельзя базироваться на проверенной атомной энергетике? Есть опасения, что не хватит урана?
— Урана много, грубо говоря, хватит на сто лет. Хотя сейчас «Росатом» работает над организацией замкнутого ядерного топливного цикла с использованием быстрых реакторов, что позволит увеличить ресурсные возможности. Ресурсный вопрос не самый страшный. Намного существеннее эффективность использования топлива и экологичность.
 
— В термоядерной энергетике не возникает вопроса достаточности топлива?
— В народе любят сравнивать термоядерную установку с искусственным солнцем. Но так говорить не совсем справедливо, как раз исходя из вопроса о топливе. В звездах исходным продуктом для термоядерной реакции является водород. Сделать на Земле такое искусственное солнце сложно. Нужно слишком много водорода, и нужна масса звезды, чтобы этот водород удержать.
Но у водорода существуют изотопы. Наиболее распространенный — дейтерий, менее распространенный — тритий. Между ними можно организовать термоядерную реакцию в земных условиях, которая окажется эффективна. Дейтерий и тритий будут использоваться на промышленных реакторах. На экспериментальных установках физики работают в основном с простым водородом или с дейтерием.
 
— Дейтерия и трития достаточно?
— Дейтерия хватит. Тритий в природе сам по себе не встречается, его можно синтезировать, например, из лития, которого достаточно много в мире, несмотря на высокий спрос на него из-за производства аккумуляторов.
 
— Добыча трития — дорогой процесс?
— Цена трития примерно $20–30 млн за 1 кг, однако она условна. Формально тритий не является рыночным продуктом. Для термоядерных реакторов нужны миллиграммы этого вещества, поэтому цена топлива не будет создавать основной вклад в цену выработки энергии в термоядерном реакторе, точно так же, кстати, как и в ядерном реакторе.
И для ядерной энергетической установки, и в будущем для термоядерной самые главные затраты — сооружение реактора. Вы вкладываете много денег в строительство станции, а окупается этот процесс за счет того, что топливная составляющая в себестоимости выработки оказывается достаточно низкой.
 
— Почему создание термоядерной установки требует таких больших временных и денежных затрат?
— Физическая задача — обеспечить необходимые условия для протекания термоядерных реакций. Чтобы произошла реакция, нам надо очень сильно сблизить два ядра, в результате чего произойдет ядерная реакция и выделится энергия. Для этого надо нагреть их до большой температуры, в сотни миллионов градусов. Получится плазма. Плазму надо изолировать от стенки, для чего было придумано использовать магнитное поле. Но оказалось, что простой магнит не годится, потому что частицы плазмы уходят вдоль магнитного поля, а держатся только поперек. Физики придумали пропустить ток по бублику, чтобы создать дополнительное винтовое магнитное поле — так устроен токамак. Идея позволила сочетать сразу две потребности: удержание плазмы и её нагрев.
 
— Какие проекты токамаков самые успешные?
— За всю историю в мире создано более 300 токамаков. Токамак — советское изобретение, и все ключевые достижения на начальном и серединном этапе развития термоядерного синтеза были сделаны в нашей стране в Курчатовском институте. В 1979 году был запущен токамак Т-7 — первая в мире установка с магнитной обмоткой из сверхпроводника. В 1994 году на американском токамаке TFTR при работе с дейтерием и тритием зарегистрировано макроскопическое выделение термоядерной мощности на уровне 10,5 МВт. Европейский токамак JET в 1997 году продемонстрировал термоядерную мощность почти 17 МВт, а в конце прошлого года — выделение 69 МДж энергии. В этом году установку выводят из эксплуатации.
JET стал базисом для разработки проекта ITER (International Thermonuclear Experimental Reactor, Международный экспериментальный термоядерный реактор). Человечество уже знает, что термоядерная реакция может протекать в земных условиях. Но пока не столь эффективно, чтобы производить электричество. Чтобы запустить термоядерную реакцию, мы должны потратить больше энергии, чем она нам дает взамен.
 
— Почему в 2025 году на ITER не будет первой плазмы, как предполагалось?
— С первого раза обычно никогда не получается все задуманное. ITER с технологической точки зрения находится на пределе возможностей человечества. Ведущие страны мира договорились делать проект вместе, разделили функции и задачи.
Третий год идет сборка деталей. Элементы вакуумной камеры, изготовленные европейскими партнерами, не стыкуются. Погрешность в изготовлении должна была быть доли миллиметров, а оказалась сантиметрового уровня. Не вышло, будут переделывать.
Второй пример: детальное изучение сборки теплозащитного экрана для охлаждения стенки вакуумной камеры показало наличие элементов коррозии на трубочках для жидкого азота. Команда ITER решила переделать все. Дополнительные затраты, дополнительное время.
 
— Какие еще трудности возникают?
— Мы стоим перед необходимостью принять решение, из чего делать материал первичной обшивки стенки вакуумной камеры внутри. Исходно отказались от графита в пользу бериллия. Но в процессе эксплуатации токамаков по всему миру стало понято, что бериллий не выдержит чудовищные энергетические нагрузки.
Наилучшим кандидатом был признан вольфрам как самый тугоплавкий металл в природе. Решение делать покрытие стенки из вольфрама еще предстоит принять Совету ITER. Потребуется разработка новой технологии, потому что вольфрам нужно покрыть специальным покрытием.
 
— В 2021 году в РФ запущен федеральный проект по разработке технологий термоядерного синтеза. Один из ключевых элементов — строительство токамака в Троицке. Как идет работа?
— Мы уже разработали концепцию токамака с реакторными технологиями (ТРТ) в Троицке, чтобы отработать отечественные технологии, пригодные для установки реакторного масштаба. Планируем к концу года завершить создание эскизного проекта. К строительству должны приступить в начавшейся шестилетке, предполагая завершить основные этапы к 2030 году. Мы сможем выполнить их, если на продолжении федерального проекта будет выделено достаточное количество средств.
 
— Какие технологии будут продемонстрированы и опробованы на ТРТ?
— В первую очередь мы планируем сделать магнитную систему на базе высокотемпературного сверхпроводника, что позволит увеличить магнитное поле. Целый ряд технологий предстоит отработать и по взаимодействию плазмы со стенкой, энергии из плазмы, созданию так называемого бланкета, который потом можно будет использовать для преобразования энергии.
 
— Сейчас идет обсуждение финансовых параметров?
— Указ президента о продлении нашей комплексной программы «Развитие техники и технологии научных исследований в области использования атомной энергии в Российской Федерации» (РТТН, включает в себя федеральный проект по развитию термоядерного синтеза.— “Ъ”) уже есть. Обсуждаются параметры, наполнение. Вопрос о том, будут ли выделены средства на сооружение ТРТ. Без старта проекта в 2021 году термоядерные исследования фактически были бы прекращены.
 
— Вы направили ценовые предложения по финансированию программы до 2030 года?
— Мы все время направляем.
 
— О каких суммах идет речь?
— А зачем об этом говорить сейчас, заранее?
 
— Предполагается, что «Росатом» будет вкладывать внебюджетные средства?
— Конечно. Внебюджетные средства предполагаются на всю программу, не только на термоядерный синтез. Более того, существует целый ряд направлений, которые мы полностью реализуем за счет собственных средств корпорации.
 
— Сколько денег было заложено на ваш сегмент в РТТН 2021–2024 годов?
— Более 40 млрд руб. Объемы финансирования термоядерных программ в странах-конкурентах разительно отличаются. В США только на 2024 год на термоядерные исследования выделено более $1 млрд, причем лишь по статье Минэнерго. Примерно $800–900 млн в год выделяет Китай.
 
— Какой бюджет у проекта ИТЭР?
— Годовой бюджет ИТЭР всегда разный. Примерно чуть меньше $400 млн.
 
— Почему частные компании увеличивают инвестиции в термоядерные исследования?
— В бизнес-среде уже есть понимание, что эти технологии будут востребованы, значит, надо иметь компетенции. Но никакие компании сейчас не смогут извлечь, как фокусник кролика из шляпы, новые нетривиальные решения. За всю историю термоядерных исследований много различных идей было перепробовано, испытано, отброшено.
 
— Некоторые инвесторы за рубежом говорят, что уже к 2030 году запустят энергетический термоядерный реактор. Этому можно верить?
— Думаю, обещания ничем не подкреплены. К сожалению, иногда на эти заявления попадаются и серьезные издания. В перечне инвесторов, перечисленных в докладе Fusion Industry Association, есть приличные компании. Например, General Atomics. Компания частная, но это монстр, который сравним по размерам с дивизионом «Росатома». При этом General Atomics в значительной степени существует на субсидии Минэнерго США.
 
— В России частный бизнес не хочет вкладывать деньги в технологии термоядерного синтеза?
— Мне неизвестно о серьезных попытках. Не так много в нашей стране бизнесменов, которые обладают деньгами и дальновидностью. Существует огромное количество направлений бизнеса, которые могут приносить доход гораздо быстрее.
 
— Когда Россия сможет применять токамак в качестве источника электроэнергии?
— По моим представлениям, непосредственно в России эта тема возникнет даже позже, чем в остальном мире. Страна обладает богатейшим запасом углеводородов. Пренебрегать этим просто глупо. Надо ли нам развивать ядерную и термоядерную энергетику? Однозначно да. В том числе учитывая возможности экспорта. Я нахожусь на позиции, что наша страна и «Росатом» должны обладать всеми технологиями в ядерной отрасли. Надо иметь возможность, а обратить её на получение прибыли тем или иным способом — дело времени.
На одной из международных конференций я подошел к представителю некой достаточно успешной частной компании в сфере термоядерного синтеза. Я спросил, зачем он, неглупый молодой человек, этим занимается, ведь до конца своей жизни термоядерный реактор не продаст? Он сказал: «В бизнесе ответ очень простой. Физики, ученые, сделайте что-нибудь новое, а наш бизнес уже найдет, куда, как это применить и получить с этого выгоду». Этой постоянной нацеленности на новое нашему бизнесу, к сожалению, не хватает. Зачастую ученые, чтобы просто начать исследование, оказываются перед необходимостью обосновать конечную эффективность проекта.
В этом большая проблема нашей организации науки, которая сохранилась с советских времен, хотя тогда на науку деньги выдавали легче. Когда вы выводите на рынки принципиально новый продукт, предсказать его экономическую эффективность невозможно просто потому, что на рынке аналога нет. Если бы в начале 1950-х годов кто-нибудь попросил Курчатова сначала показать экономику АЭС, то просто не было бы первого реактора и ядерной энергетики в целом. Нельзя прогнозировать экономический эффект нереализованного достижения науки. Оно способно кардинально изменить экономические представления. У людей, принимающих подобные решения, должна быть мудрость, дальновидность, рискованность, чутье и немного авантюризма.
 
Интервью взяла Полина Смертина - «Коммерсант», 24.05.2024

Серия сообщений "Атомная отрасль /2/":
Часть 1 - Ядерную энергетику хорошо озадачили
Часть 2 - Три года после цунами
...
Часть 26 - Безопасность «мирного атома» - это иллюзия
Часть 27 - Эхо Чернобыля: 38 лет спустя
Часть 28 - Полвека первым токамакам. Плазмы пока нет...
Часть 29 - Радиоактивная загадка чернобыльских кабанов
Часть 30 - Как атомщики развивают «мегасайенс»
...
Часть 32 - Уран будет по-прежнему востребован
Часть 33 - Промежуточные испытания ИТЭР не нужны?
Часть 34 - В Обнинске


Метки:  

Полку токамаков прибыло. В Казахстане - КТМ

Дневник

Пятница, 29 Ноября 2019 г. 00:12 + в цитатник
Физический пуск специализированного токамака КТМ
 
20 ноября года получен плазменный разряд, удовлетворяющий требованиям второго и заключительного этапа физического пуска установки КТМ(казахстанский токамак материаловедческий). На данном этапе проведена демонстрация работоспособности установки КТМ и ее основных технологических систем с получением плазмы в омическом режиме (без использования средств дополнительного нагрева).


tokrtm (275x183, 42Kb)В процессе экспериментов проведена отработка начальной фазы сценария плазменного разряда и получения пробоя ионизированного газа, а также отработка сценария развития плазменного шнура и достижение параметров плазменного разряда соответствующих расчетным значениям. В качестве рабочего газа использовался водород. Основные цели заключительного этапа физического пуска токамака КТМ были достигнуты.   

В работе приняли участие специалисты Национального ядерного центра Республики Казахстан, а также российских Курчатовского комплекса термоядерной энергетики и плазменных технологий Национального исследовательского центра «Курчатовский Институт»  при методической поддержке НИИЭФА им. Д.В. Ефремова. 
Реализация физического пуска токамака КТМ является значимым событием и ответственным отчетным этапом, позволяющим дать старт началу работ по выводу установки КТМ на полномасштабные проектные параметры работы. 
В ближайшие три года планируется работа по выводу установки КТМ на проектные параметры плазменного разряда - переход от круглого сечения плазменного шнура к вытянутому, и как следствие, к диверторной конфигурации плазмы. После этого планируется подключение системы дополнительного высокочастотного нагрева плазмы и вывод тока плазмы установки на значение порядка 750 кА. Время плазменного разряда будет доведено до 5 с. Фактически это технологический предел установки, позволяющий производить полномасштабные работы по изучению воздействия плазмы на кандидатные материалы будущих термоядерных реакторов. 
 
Данные работы будут реализованы в рамках программы АТОМ-СНГ и соответствующего соглашения о совместном использовании токамака КТМ странами СНГ. Завершение этих работ планируется в 2023 году.
Проект «Создание казахстанского материаловедческого токамака КТМ» реализуется в г. Курчатов в соответствии с решением Правительства Республики Казахстан в поддержку программы создания международного термоядерного экспериментального реактора ITER, а также для развития в Республике Казахстан современной науки и технологий, подготовки научных и инженерных кадров высокой квалификации.
 
Опубликовано: «Атомная энергия»

Серия сообщений "Наука /продолжение -3/":
Часть 1 - XFEL поможет видеть атомарные процессы
Часть 2 - По гамбургскому счёту. Как создавался XFEL
Часть 3 - Полку токамаков прибыло. В Казахстане - КТМ
Часть 4 - Курчатов такого не позволил бы...
Часть 5 - В чём «СИЛА», Благов?
...
Часть 48 - Как СССР соперничал с США в лунных программах
Часть 49 - «СКИФ» строится, пора готовить исследователей
Часть 50 - Механизм земной жизни - математически


Метки:  

Японский подход к термоядерному реактору

Дневник

Вторник, 05 Декабря 2023 г. 11:20 + в цитатник
Новый проект обещает приблизить производство чистой энергии
 
В Нака, недалеко от Токио, открыт крупнейший в мире работающий экспериментальный реактор термоядерного синтеза JT-60SA. Этот проект, находящийся на ранних стадиях разработки, рассматривается как возможный ответ на будущие энергетические потребности человечества.
 
В отличие от деления, используемого в реакторах атомных электростанций, термоядерный синтез основан на слиянии двух атомных ядер. Цель термоядерных проектов – добиться синтеза ядер водорода в более тяжёлый элемент, гелий, высвобождая при этом энергию в виде света и тепла, аналогично процессам, происходящим внутри Солнца.

5d23_termoja2 (314x186, 95Kb)JT-60SA предназначен для исследования возможности использования термоядерного синтеза в качестве безопасного, масштабируемого и безуглеродного источника энергии, производящего больше энергии, чем требуется для его запуска.По сравнению с делением, термоядерный синтез считается более безопасным, так как не несёт в себе риска катастрофических ядерных аварий, подобных той, что произошла в той же Японии в 2011 году (вследствие мощного цунами, затопившего территорию и сооружения АЭС "Фукусима"), и производит гораздо меньше радиоактивных отходов.

 
Шестиярусный реактор, расположенный в ангаре в Нака, содержит кольцевую камеру «токамак», в которой нагретая до 200 миллионов градусов Цельсия плазма вращается в форме пончика. Реактор JT-60SA является совместным проектом Европейского Союза и Японии и предшественником более крупного проекта – Международного термоядерного экспериментального реактора (ITER) во Франции.
По словам заместителя руководителя проекта JT-60SA Сэма Дэвиса, устройство "приблизит нас к энергии термоядерного синтеза". Кадри Симсон, еврокомиссар по энергетике, назвала JT-60SA "самым передовым токамаком в мире" и отметила, что начало его работы является "важной вехой в истории термоядерного синтеза".
 
В прошлом декабре в Национальной лаборатории имени Лоуренса Ливермора в США было впервые достигнуто "чистое энергетическое усиление". В этом американском учреждении используется другой метод возбуждения плазмы, известный как инерциальный удерживающий синтез, при котором водород бомбардируется высокоэнергетическими лазерами.
 
Оригинал м-ла опубликован: здесь о2.12.2023

Серия сообщений "Наука /продолжение -3/":
Часть 1 - XFEL поможет видеть атомарные процессы
Часть 2 - По гамбургскому счёту. Как создавался XFEL
...
Часть 37 - Подмосковье и НИЦ «КИ» договорились. О чём?
Часть 38 - Физика «дружественная» и не очень
Часть 39 - Японский подход к термоядерному реактору
Часть 40 - О статусе и будущем ядерной физики в России
Часть 41 - Научные ожидания - 2024 от Nature
...
Часть 48 - Как СССР соперничал с США в лунных программах
Часть 49 - «СКИФ» строится, пора готовить исследователей
Часть 50 - Механизм земной жизни - математически


Метки:  

Почему токамак - российский бренд. Как водка...

Дневник

Четверг, 18 Апреля 2019 г. 10:28 + в цитатник
Токамак раскроет тайны горячей плазмы
 
В эти дни на базе НИЦ «Курчатовский институт» создается токамак принципиально нового типа, в недрах которого можно будет получить плазму более высоких энергетических значений, чем обычно. Установка, находящаяся на этапе сборки, напоминает инопланетный космический корабль с распахнутыми настежь черными глазницами иллюминаторов. Однако пройдет несколько месяцев, и в его металлическом «сердце» поселится раскаленная плазма. Тогда здесь начнутся эксперименты, которые позволят ученым пролить свет на многие фундаментальные вопросы и решить ряд важных прикладных задач. 

p_xvosenko1 (77x117, 11Kb)

     Что это за вопросы и каких результатов стоит ожидать от работы этой   уникальной мегаустановки - наш   разговор с   Петром Павловичем Хвостенко,   доктором технических наук, научным руководителем Курчатовского   комплекса   термоядерной энергетики и плазменных технологий НИЦ «Курчатовский   институт».
 
  — Петр Павлович, мы с вами находимся в зале, где создается новый токамак. Расскажите, пожалуйста, каковы цели и   задачи этого проекта.
 — Он называется токамак Т-15МД, то есть Т-15 модернизированный. Известно, что последние годы строится большой   международный токамак - реактор ITER. И одна из наших задач - поддержка программы ITER. Вторая задача, не менее важная   - построить гибридный реактор, который станет источником термоядерных нейтронов. Наш токамак Т-15МД - прототип будущей большой установки, с помощью которой можно будет решить проблему замыкания топливного цикла в атомной энергетике. Ведь сегодня считается, что основного топлива для тепловых атомных станций хватит лет на 50–60.
 
 — Поэтому встала задача: как возобновить топливо для атомных тепловых реакторов?
 —  Токамаки как источники термоядерных нейтронов как нельзя лучше подходят для решения этой задачи. Токамак должен генерировать термоядерные нейтроны, которые облучают топливо, окружающее плазму. В этом случае исходом топлива становится торий-232, которого очень много в земной коре. После облучения нейтронами мы получаем уран-233, который и будет топливом для атомных станций.
 
— Чем же термоядерный источник нейтронов лучше классической термоядерной электростанции?
— Разница вот в чем. В термоядерном источнике нейтроны получаются от взаимодействия пучка быстрых атомов с основной плазмой, при этом температура плазмы не должна доходить до 120–150 млн градусов, как в чистом энергетическом реакторе. Она должна иметь температуру не более 30–50 млн градусов.
 
— Неужели это мало?
— Немного. На сегодняшних токамаках с помощью гиротронов легко получить и более высокие температуры. Но если вы имеете источник быстрых атомов, которые взаимодействуют с основной плазмой, то в этом случае появляются нейтроны, с помощью которых мы можем изучать физику взаимодействия процесса. 
 
— На каком веществе будет работать токамак?
— На водороде. Поэтому нейтронов здесь не будет, но все вопросы технологии процесса мы отработаем. Причем он может работать как для нужд ITER, так и для задач гибридного реактора.
 
— Внешне ваш токамак как будто из фантастического фильма. Кажется - сейчас полетит.
— Да, это действительно нечто космическое. А когда входишь внутрь, создается полное ощущение полета. На сегодня мы окончательно смонтировали тороидальную магнитную систему, камеру высотой 3,5 м, и монтажники входят туда, ставят диагностику, меняют элементы, которые будут взаимодействовать с плазмой. Когда плазма поселится в «сердце» токамака, ощущение фантастики усилится.
 
— Токамаков в мире существует немало. Чем ваш отличается от других?
— Наш токамак уникален. Он имеет достаточно низкое аспектное отношение, то есть отношение величины большого радиуса плазменного шнура к малому радиусу. Мы сможем получать более высокое давление плазмы. Такой комбинации низкого аспектного отношения и магнитного поля в 2 Тл нет нигде в мире.
 
— Кто придумал такую модель установки?
Конечно, у истоков этих работ на современном этапе стоял Е.П. Велихов, инициировавший международный проект ITER. Э.А. Азизов, который долгое время был директором Курчатовского института физики токамаков, выдвинул идею установки, а я рассчитывал всю магнитную конфигурацию. И когда она стала более или менее понятна, мы обратились к главному конструктору Научно-исследовательского института электротехнической аппаратуры им. Д.В. Ефремова (НИИЭФА) в Санкт-Петербурге. Они делали всю проработку конструкции токамака. А изготовление всех элементов и узлов взяла на себя брянская группа компаний машиностроения и приборостроения, где в рекордно короткие сроки была создана практически вся магнитная система. Это тоже уникальный результат междисциплинарного сотрудничества. Наши коллеги, в том числе зарубежные, не верят, что можно было все это сделать менее чем за два года.
 
— Что дает такое сочетание физических характеристик в работе вашей установки?
— Мы можем получать более высокие значения бета. Это отношение газокинетического давления плазмы к давлению магнитного поля. Это значительно повышает эффективность использования магнитного поля. Кроме того, обычно при повышении давления развивается неустойчивость, которая разрушает плазменный шнур, и поэтому давления выше достичь нельзя. А вот в компактном токамаке, где все сжато, величина бета может достигать более заметных ­величин, а это очень важно. Мы сохранили магнитное поле, достаточно высокое для токамака. Это удалось потому, что мы использовали медный проводник с небольшой добавкой серебра. Что это дало? Во-первых, мы имели проводник с проводимостью чистой меди, а по прочности он как нержавеющая сталь. Это важно, потому что при работе токамака
действуют очень большие растягивающие силы, и если бы это была чистая медь, то предел прочности был бы превышен. А когда мы перешли на другой тип проводника, все получилось.
 
— Как вы думаете, когда установка заработает в полную силу?
— Физический пуск установки запланирован на декабрь 2020 г. Мы работаем в тесном контакте с ГК «Росатом» в рамках федеральной целевой программы «Ядерные энерготехнологии нового поколения». По всем расчетам, к концу апреля мы окончательно соберем нашу установку, потом подключим вакуумную откачку, заварим камеру, всё проверим. Вероятно, к лету она будет готова с точки зрения подключения коммуникаций. А потом мы всё это разовьем, сделаем антресоли, чтобы физики могли ставить диагностику.
 
— Физики будут работать на антресолях?
— Да, по всему периметру вокруг токамака у нас будут установлены красивые двухуровневые антресоли. Это будет деревянная конструкция, близко подходящая к токамаку. На первом этапе диагностики пройдут вакуумные испытания на стендах. Затем они будут пристыковаться к патрубкам (их здесь 152) и работать непосредственно с токамаком.
 
— Пристыковываться? Выходит, не зря я увидела здесь космическую аналогию?
— Да, именно пристыковываться. Хотя, конечно, люди будут находиться в атмосфере Земли, не будут летать, но сравнение с космическим экспериментом тут вполне уместно. Наблюдение за плазменным процессом, который будет происходить внутри камеры, — это, в принципе, то же самое, что изучение процессов, происходящих на Солнце или в звездах. И вопросов здесь пока больше, чем ответов.
 
— Насколько опасна такая работа?
— Больших нейтронных потоков здесь не будет. Во время разряда образуется пучок ускоренных электронов, которые попадают на стенку, образуется жесткое гамма-излучение, но интенсивность его очень невелика. К тому же, когда работает установка, в зале никого нет. У нас существует мощная биозащита - стены из свинца и бетона. В процессе работы токамака в отличие от тепловых атомных станций большой наведенной радиационной активности нет, поскольку нет и нейтронов. И вообще токамак по сравнению с АЭС более естественный с точки зрения природоподобия. Президент НИЦ «Курчатовский ­институт» М.В.Ковальчук, как идеолог развития природоподобных технологий, всегда отмечает, что токамак - это природоподобная энергетическая установка по своей сути.
 
— Почему?
— Именно потому, что мы воссоздаем такие же реакции, какие происходят на Солнце и в звездах. Природа распорядилась получать энергию путем синтеза легких ядер - и ровно то же самое мы делаем в токамаке. В отличие от реакторов, делящих тот же уран. Ведь такого процесса не увидишь в природе.
 
— Каких ожидаете результатов?
— В первую очередь, мы должны собрать большую базу данных как по инженерии, так и по физике для проектирования будущих термоядерных станций и гибридных реакторов. За это время нам нужно обобщить всю информацию, чтобы потом меньше оставалось вопросов с точки зрения проекта будущих больших реакторов.
 
— А с фундаментальной научной точки зрения каких ожидаете открытий?
— Физика плазмы — наука, до конца не изведанная. Надо найти пути к уменьшению различных влияний и повышению устойчивости плазмы. Эти задачи идут в поддержку ITER, потому что следующий шаг - это демонстрационный реактор, большая экспериментальная установка, где мы ждем по-настоящему прорывных результатов.

vmh_ludi (273x217, 78Kb)

 —  Помните, как у Высоцкого: «А с этой плазмой дойдешь до маразма». Правда ли, что плазма  самое сложное состояние вещества?
— Абсолютная правда. Состояние это сложное и во многом непонятное. Идея токамака была изначально завязана на плазме, и родилась она в этих стенах, в Курчатовском институте, еще в 50-е гг. прошлого века. И.Е. Тамм и А.Д. Сахаров выдвинули идею, как с помощью магнитного поля можно удерживать высокотемпературную плазму, а потом у нас в институте начались эти исследования. После испытания водородной бомбы в 1953 г. И.В. Курчатов говорил о том, что термоядерная энергия должна не разрушать, а созидать. И когда появилась эта идея, он горячо её поддержал, лично интересовался исследованиями и даже предложил установку, которая очень похожа на сегодняшний гибридный реактор. В этом был пророческий дар И.В. Курчатова. Исследования были поручены Л.А. Арцимовичу, под руководством которого проводились исследования именно в этом здании. А само слово «токамак» (сокращение от «тороидальная камера с магнитными катушками») придумал И.Н. Головин, первый заместитель И.В. Курчатова. Это слово используется во всем мире, это наш бренд - как спутник, матрешка, валенки или водка.
 
— Первый токамак тоже появился в этих стенах?
— Да, в 1959 г. Это была маленькая установка. А до 1965 г. в этом здании мы собрали еще девять установок различной конфигурации, на которых решались самые разные задачи. В 1968 г. здесь впервые в мире была получена плазма с температурой более 10 млн градусов. Никто не верил, что нам удалось достичь такой температуры. Предложили Л.А. Арцимовичу пригласить иностранную делегацию, чтобы это проверить. А Лев Андреевич был не только выдающимся ученым и организатором науки, но еще и очень смелым человеком. Холодная война, железный занавес - а он сумел добиться разрешения на приезд в эти сверхсекретные стены английских ученых. Настолько велик был его авторитет.
 
— И что же? Они померили температуру плазмы?
— Померили. Причем приехали на пяти огромных фурах, привезли свое измерительное оборудование. Тогда ведь вся диагностика была громоздкой. В результате измерений температура оказалась даже чуть выше, чем мы заявляли. После этого все сомнения были сняты - и токамак получил «зеленую улицу». Сегодня более 300 токамаков создано по всему миру. Но наш, повторю, уникален.
 
— Наверное, к вам на работу приходят очень квалифицированные физики?
— Сейчас вектор исследований перемещается в технологию, инженерию. Например, в ITER первая стенка должна будет меняться раз в пять лет. Там идут большие тепловые потоки до 20 МВт/м2, начинается эрозия материала, он попадает в плазму, поэтому без супер-профессиональных физиков и инженерных кадров не обойтись. За годы работы мы провели исследования по широкому спектру материалов, включая вольфрам, который сейчас предлагают наши европейские партнеры. Выясняется, что он не очень хорошо себя ведет при больших нагрузках.
 
— То есть идет поиск идеального материала?
— Да. Сейчас наши ученые предлагают литиевые технологии, которые позволяют перераспределять мощность на более широкие площади, не давая такую интенсивную нагрузку. Эти идеи также будут проверены на нашем токамаке.
 
— Значит, опять настал момент, когда инженеры в стране нужны?
— Да, это так. Токамак будет полностью управляться системой компьютеров, вся техника — самая современная и очень сложная. Физики — это наши главные генераторы идей, а инженеры - наша главная движущая сила. С ростом масштабов установок и их сложности эти специалисты должны быть самого высокого уровня.
 
— Где вы их берёте?
— Физики - базовая кафедра МИФИ, МФТИ, физфак МГУ. Инженерия - Бауманский институт, МЭИ, МАИ. Очень толковые ребята, других здесь не держат.
 
— Вы ведь тоже в свое время пришли сюда из МГТУ им. Н.Э. Баумана?
— Да, это моя альма-матер. Когда я пришел сюда больше 40 лет назад, мне казалось, что я попал в какую-то научную Мекку. Здесь широчайшее поле знаний, на котором, куда ни обратишься, тебе подскажут все, что ты хочешь узнать. Ты всё это впитываешь и с какого-то момента тоже становишься разносчиком знаний. Это поле знаний - Курчатовский институт.

n_leskova1 (93x100, 9Kb)

— Такая атмосфера осталась?
— Осталась. Мало того, в последние годы, я бы сказал, мы двинулись более широко, в разнообразных направлениях. М.В. Ковальчук такие традиции активно развивает. У нас по его инициативе сейчас представлены буквально все науки, даже гуманитарные. При этом активно развиваются и базовые атомные исследования, с которых когда-то начинался наш институт. Сегодня внимание к атомным и ядерным установкам и проводимым на них исследованиям огромное. Есть понимание на государственном уровне, что эти знания могут двигать общество вперед, и радостно, что именно Курчатовский институт этим занимается. Мне особенно приятно об этом говорить, потому что я проработал здесь, можно сказать, всю жизнь.
 
Вопросы задавала:  Наталия Лесковаисточник:  "Пресс-центр НИЦ "КИ" - со ссылкой на журнал "В мире науки"

Серия сообщений "Наука /продолжение -2/":
Часть 1 - Как всегда, в конце июня
Часть 2 - Пролить свет на тёмную составляющую
...
Часть 22 - NICA, ИБР-2 и медицинские пучки
Часть 23 - Будет ли построен ИССИ-4 в Протвино?
Часть 24 - Почему токамак - российский бренд. Как водка...
Часть 25 - К итогам выборов в РАН 14.11.2019
Часть 26 - Ускорители частиц как "двигатели прогресса"
...
Часть 48 - "КИСИ-Курчатов" повысит свою классность
Часть 49 - Трезвый взгляд на грустные перспективы
Часть 50 - Саров протягивает руку Протвино


Метки:  

День рождения протвинского ИФВЭ

Дневник

Понедельник, 13 Ноября 2023 г. 00:22 + в цитатник

Статья написана к юбилейной дате в истории ИФВЭ (републикуется в очередную годовщину)

slasonau (283x198, 29Kb)

 Полвека высоких энергий

  Кажется, совсем недавно все мы, жители Протвино, с большим   воодушевлением отмечали 50-летие нашего города,   календарно   привязанное, согласно городскому Уставу, к дате 19   апреля 1960   года. Уже тогда «красной нитью» в материалах   празднования   проходила простая истина: история нашего города   неразрывно   связана с историей Института физики высоких   энергий, хотя   собственно «день рождения ИФВЭ» документально   связан с   другой календарной датой – 15 ноября 1963 года.

  (на снимке - фрагмент панорамы внутри экспериментального зала ИФВЭ под единой крышей)

    Почему так?

Как говорится, «заглянем в святцы». А именно – в капитальный сборник статей под названием «40 лет ИФВЭ», изданный самим институтом.


Ещё в начале 50-х годов И.В. Курчатовым был инициирован вопрос о создании в СССР ускорителя протонов на самую высокую в мире энергию. Это было нужно для проведения передовых фундаментальных исследований строения материи и основополагающих сил Природы. Вопрос решался сложно. Хотя и бытует мнение, что «раньше науке было легко», но солидарное мнение лидеров атомной науки и всего научного сообщества страны (тогда с ним считались) в конечном счёте возобладало.


В марте 1958 года состоялось принципиальное решение Совета Министров СССР о сооружении научного комплекса – ускорителя на энергию не менее 50 ГэВ и приборной базы для проведения на нём физических исследований. Было ясно, что для эксплуатации такого комплекса требуется построить жилой посёлок не в один десяток тысяч человек. Подобного рода опыт к тому времени был уже в стране накоплен, особенно в атомной отрасли, а перспектива широкого международного сотрудничества требовала того, чтобы строился город с современными условиями проживания. Поэтому на максимально высоком уровне проводились не только проектно-конструкторские работы по созданию ускорителя, но и проектные работы по жилому поселку. В московском ГСПИ, в мастерской архитектора Д.М. Корина был создан первый проект будущего города физиков, привязанный к площадке с надёжным скальным основанием на левом берегу реки Протвы близ впадения её в Оку (эту площадку, надо сказать, выбрали из ряда возможных вариантов по всей стране).
Здесь на основе отраслевого (Минсредмаш) У
правления строительства №620 возникает один из мощнейших строительных комплексов в Московской области, начавший в январе 1960 года работы по сооружению полуторакилометрового кольцевого котлована «под ускоритель», и почти одновременно - по возведению первых жилых зданий поселка (отсюда и возникла в истории города дата 19 апреля 1960 г.). Первым почтовым адресом значилось «Серпухов-7». Почему «7»? К тому времени в Серпуховском районе было 6 почтовых отделений, а собственное имя у нового поселка появилось не сразу: первым делом надо было его построить. Потому и ускоритель долго называли «Серпуховским».


progerb (139x160, 5Kb)   С ноябре 1989 года бывшему «рабочему посёлку Протвино» был присвоен статус города   областного  подчинения, а когда началось неспешное присвоение статуса «наукоградов РФ», город   Протвино с августа 2008 года стал 14-м таким наукоградом  в стране (первым был Обнинск в 2000 году).   Впрочем, из сказанного выше ясно, что наукоградский статус у Протвино подразумевался   изначально – с момента принятия решений о строительстве ускорителя и начала работ.


   Нельзя не отметить, что сооружение комплекса протонного ускорителя продвигалось   невиданными  даже в мировой практике темпами. Сюда были стянуты специалисты из ряда  институтов и предприятий страны – для того, чтобы вначале вдохнуть жизнь в сооружаемый синхротрон общим весом магнитной системы около 22 тысяч тонн, а затем и работать на нем. Люди разных специальностей приезжали сюда работать и жить, пускать корни на этой подмосковной земле.
Для решения научных задач в 1962 году здесь был организован филиал московского Института теоретической и экспериментальной физики (ИТЭФ), в котором как раз и разрабатывался проект ускорителя, известного ныне под аббревиатурой У-70 (с энергией протонов порядка 70 ГэВ). Создание такого ускорителя потребовало сосредоточения значительных научно-технических ресурсов атомной отрасли. Как следствие, 15 ноября 1963 года появился приказ Госкомитета по использованию атомной энергии СССР об образовании самостоятельного Института физики высоких энергий во главе с молодым (тогда) профессором теоретической физики А.А. Логуновым - «для проведения научно-исследовательских работ и подготовки научно-технических кадров СССР», как значилось в документе. 14 октября 1967 года ускоритель был введён в строй, здесь пошла «новая физика» (на то время)…

(подробнее об основных научных и научно-технических результатах деятельности Института, включая последовавшие изменения - на  сайте ИФВЭ)

50annIHEPs (195x105, 18Kb)

И вот Институту полвека  (и более - по мере обновления этой записи), . Несмотря на прошедшие перемены (не всегда позитивные), он поныне остаётся не только признанным в мире физическим центром, но и по-прежнему градообразующим по сути предприятием. Действительно - облик города, его жизненный уклад создают люди, в большинстве своём так или иначе связанные с ИФВЭ.

Доске почёта ИФВЭ (к 50-летию ей сделали "евро-ремонт")

 

Велика и созидательная инерция его ранее наработанного научно-технического потенциала. Многие научные и научно-технические новации, предложенные в ИФВЭ, способствовали привлечению к сфере высоких научных технологий целого ряда российских предприятий. Хорошо известны они и за рубежом, поскольку отдельные ускорительные и физические разработки ИФВЭ (равно как и их разработчики) востребованы в таких международных мега-проектах, как LHC, FAIR, XFEL, ITER...  С 2012 г. ГНЦ ИФВЭ организационно участвует в деятельности первого в стране Национального исследовательского центра, будучи  переведённым из Росатома в состав НИЦ «Курчатовский институт».


Короче говоря, физикам ИФВЭ есть, что вспомнить, и есть, чем гордиться, а самое главное – есть, над чем работать дальше. Как говорится – «жила бы страна родная…» 


Несмотря на нынешние (как всегда, трудные) времена для развития отечественной фундаментальной науки, хочется верить, что эстафета добывания новых знаний о тайнах мироздания будет продолжена и дальше в этом в симпатичном городке с простым названием Протвино – в честь небольшой среднерусской реки, давшей ему имя.

Геннадий Дерновой (в ИФВЭ с 1972 г.,  в 1997-2008 г.г. – заместитель учёного секретаря ИФВЭ по связи с прессой и общественностью)

Опубликовано: газета "Протвино сегодня" - 1 ноября 2013 г,

Серия сообщений "Авторская колонка в "Протвино сегодня" ":
"Протвино сегодня" - информационно-политическая газета Протвинского информационного агентства Московской области.
Часть 1 - Росатом: из ФААЭ в корпорацию. ИФВЭ - туда же
Часть 2 - Предновогодний визит к академику
...
Часть 44 - 8–мартовский поцелуй
Часть 45 - Открытие Юрия Гагарина
Часть 46 - День рождения протвинского ИФВЭ
Часть 47 - 10 лет тому назад в губернатора верилось
Часть 48 - Самая долгая в моей жизни новогодняя ночь
Часть 49 - С Днём российской науки!
Часть 50 - Четыре тезиса в "чернобыльский" день

Серия сообщений "ИФВЭ /2/":
Часть 1 - Антиатом для будущего
Часть 2 - Железной рукой
...
Часть 27 - Как Протвино «провели мимо циклотрона»
Часть 28 - Очередная годовщина запуска синхротрона У-70
Часть 29 - День рождения протвинского ИФВЭ
Часть 30 - Негромкое назначение
Часть 31 - XXXVI Международный семинар по ФВЭ


Метки:  

 Страницы: [1]