http://mrc.org.ua/novosti-nauki-mrc/365-uchenie-so...e-nanoniti-iz-zhidkogo-benzola
Ученые из Университета Пенсильвании сообщили об открытии самого прочного и жесткого наноматериала, известного миру на сегодняшний день, на основе алмаза. Свойства этого сверхпрочного наноматериала предполагают его применение в таких важных областях, как, например, транспорт или аэрокосмическая промышленность, и это могло бы возродить идею строительства лифтов в космос.
Кольца шести атомов углерода сплетаются, образуя алмазные нанонити. Изображение - John Badding lab, Penn State Univeristy
Группа ученых под руководством химика Джона Баддинга из Университета Пенсильвании обнаружили, что отдельные молекулы бензола в жидком состоянии, состоящие из колец атомов углерода, собираются в удивительно аккуратно организованные цепи после медленно чередующихся циклов давления.
В результате, полученная нить имеет диаметр всего три атома и в тысячи раз тоньше волоса. Образующее нить зигзагообразное расположение колец атомов углерода имеет форму треугольной пирамиды подобно алмазу.
Такая структура материала, которую ученые до настоящего открытия считали невозможной, может оказаться самым сильным и прочным наноматериалом из когда-либо полученных.
Уникальное открытие свой команды Баддинг считает счастливой случайностью. Томас Фитцгиббонс, аспирант лаборатории Баддинга, хотел изучить материалы, полученные из органического химического соединения бензола. При изоляции, молекулы бензола могут реагировать интересными способами, в результате образуя уникальные структуры. Для изучения этих структур обычными методами, Фитцгиббонсу понадобилось большое количество продукта. Он положил образец жидкого бензола в устройство под названием Париж-Эдинбург в Национальной лаборатории Oak Ridge в штате Теннесси и поставил молекулы в ячейку высокого давления. Суть процесса состояла в том, что когда жидкость под сильным давлением сжимается, она переходит в состояние твердого вещества. "По существу, она замерзает," говорит Баддинг. После замораживания молекулы бензола выравниваются в предсказуемые модели уложенных столбцов.
Дальше события развивались необычно. Учеными принято считать, что поскольку сжатие продолжается, молекулы бензола в конечном итоге дают невзрачный белый порошок. "Люди думали, что они реагируют дезорганизованным способом и не образуют упорядоченную структуру," говорит Баддинг.
алмазные нанонити из сжатого бензола
Но вместо этого, в беспорядке Фитцгиббонс увидел порядок. "Это, по меньшей мере, было шоком для нас"- признается Баддинг. Исследователи были настолько удивлены, что они начали использовать разные методики для подтверждения полученного вывода, в том числе рентген и нейтронную дифракцию, просвечивающую электронную микроскопию и колебательную спектроскопию. Их результаты подтвердились: они увидели упорядоченность.
Причина этого неожиданного выравнивания молекул бензола может быть связана с временем сжатия. Обычно ученые создают бензольные материалы в небольших количествах способом быстрых циклов изменения давления. Для того, чтобы получать больше продукта, циклы сжатия должна быть медленнее. "Очевидно, мы дали молекуле бензола время на подготовку для образования структуры, в частности нанонитей," говорит Баддинг.
Это медленное сжатие стало ключом к их открытию.
Перед использованием нанонитей в коммерческих целях, Баддинг хочет определить их свойства и поведение в различных условиях и понять, каким именно образом связываются молекулы бензола. По его словам, исследования могут занять годы. Потом инженерам необходимо будет выяснить, как лучше всего запустить массовое производство нанонитей и включить их в существующую производственную инфраструктуру для различных целей. Похоже, что для начала, эти нити смогут заменить углеродное волокно, которое слабее и тяжелее, в таких коммерческих продуктах как велосипедные рамы, корпуса самолетов.
Алмаз подобные атомы углерода, также называемые аморфные атомы углерода, обычно применяются в качестве покрытий для других материалов, в качестве защитного слоя на металлическую подложку.
По материалам:
www.scientificamerican.com