-Рубрики

 -

пїЅпїЅпїЅпїЅпїЅ пїЅ пїЅпїЅпїЅпїЅпїЅ
[Этот ролик находится на заблокированном домене]

пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅ пїЅ пїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅпїЅ
В© пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ

 -Поиск по дневнику

Поиск сообщений в Just_Tilla

 -Подписка по e-mail

 

 -Сообщества

Читатель сообществ (Всего в списке: 3) vkosmosGO kayros Рецепты_блюд

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 17.09.2009
Записей: 4487
Комментариев: 454
Написано: 7108


В чем секрет молнии?

Вторник, 17 Мая 2011 г. 23:13 + в цитатник
Цитата сообщения Майя_Пешкова В чем секрет молнии?



Ученые давно заметили, что в момент бури, перед вспышкой молнии, всегда происходят загадочные гамма-всплески. Однако выяснить их природу долгое время не удавалось, и только сейчас наука приблизилась к этой разгадке, передает «РосБалт». Наземные гамма-вспышки (TGFs) впырвые были открыты в 1994 году в вершинах грозовых облаков. Для их подробного исследования Сюань-Мин Шао из Лос-Аламосской национальной лаборатории в Нью-Мексико и Дэвид Смит из Университета Калифорнии в Санта-Крус изучили данные с помощью спутника RHESSI. Результаты исследования подтвердили, что вспышки были связаны с молниями внутри облаков. Кроме того, Стивен Каммер из Университета Дьюка в Северной Каролине установил, что происходят подобные гамма-вспышки в первые несколько миллисекунд шторма.

Заинтересовался этим вопросом и Моррис Коэн из Стэнфордского университета. Он уточнил, что электрические поля в облаках часто инициируют искры несмотря на то, что слишком слабы для этого, а сама молния происходит раньше, чем должна.
Ученые уверенны, что данные исследования уже в скором времени помогут им разгадать одну из самых больших тайн планеты.
Грозs распределяются по поверхности Земли неравномерно, над океаном грозы происходят значительно реже, чем над сушей. Одновременно на планете действует около полутора тысяч гроз. Средняя интенсивность их разрядов оценивается как 46 молний в секунду.

А вот на тропическую и субтропическую зоны приходится около 78% всех молниевых разрядов. Наибольшее количество гроз зафиксировано в Центральной Африке, а в полярных районах Арктики и Антарктики такое явление природы встречается крайне редко.
Самая высокая активность гроз приходится на лето и дневные послеполуденные часы, а минимум - на время перед восходом солнца. Мо́лния — гигантский электрический искровой разряд в атмосфере, обычно происходит во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране. Ток в разряде молнии достигает 10-100 000 тысяч ампер, и 1 000 000 вольт, но тем не менее погибает после удара молнией лишь 10% людей.


Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.
Формирование молнии

Молния ударяет в Эйфелеву башню, фотография 1902 г.
Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.


Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³.
Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.
Наземные молнии
Молнии в Бостоне.
Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах[1]. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.
Молнии в г. Ессентуки
По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C.
Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой , поэтому принято считать что разряд молнии происходит от облака по направлению к земле(сверху вниз).
Молния под Зеленоградом
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.
Внутриоблачные молнии

Внутриоблачные молнии над Тулузой, Франция. 2006 год
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.
Полёт из Калькутты в Мумбаи
Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Молнии в верхней атмосфере

Молния над Коломной
В 1989 году был обнаружен особый вид молний — эльфы, молнии в верхней атмосфереВ 1995 году был открыт другой вид молний в верхней атмосфере — джеты
Эльфы


Эльфы (англ. Elves; Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources) представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облакаВысота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс
Джеты


Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов
Спрайт (молния)


Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало
Взаимодействие молнии с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)
Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год75 % этих молний ударяет между облаками или внутри облаков, а 25 % — в землю
Самые мощные молнии вызывают рождение фульгуритов

Люди и молния

Молнии — серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.


В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества.
В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 — 2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжёлых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 — 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.
Жертвы молний

В мифологии и литературе
:

Асклепий, Эскулап — сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией

Фаэтон — сын бога Солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями.
Исторические личности
:
Казанский губернатор Сергей Голицын — 1 (12) июля 1738 года погиб во время охоты от удара молнии. Российский академик Г. В. Рихман — в 1753 году погиб от удара молнии во время проведения научного эксперимента. Народный депутат Украины, экс-губернатор Ровненской области В. Червоний 4 июля 2009 года погиб от удара молнии.
Интересные факты

Рой Салливан остался живым после семи ударов молнией. Американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище. У индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации
Деревья и молния

Тополь, пораженный молнией во время летней грозы. Макеевка,Украина, фотография 2008 г.
Ствол пораженного молнией тополя
Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего — в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству
Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам.
Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.


По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности. Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников.

Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования таким как разрядниками, нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией.
Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.
Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.
Литература
Стекольников И. К., Физика молнии и грозозащита, М. — Л., 1943;
Разевиг Д. В., Атмосферные перенапряжения на линиях электропередачи, М. — Л., 1959;
Юман М. А., Молния, пер. с англ., М., 1972;
Имянитов И. М., Чубарина Е. В., Шварц Я. М., Электричество облаков, Л., 1971;
http://dic.academic.ru
http://fotoregion.ru[/more]
Рубрики:  Природные явления, стихии

Аноним   обратиться по имени Понедельник, 13 Февраля 2012 г. 06:19 (ссылка)
Ответить С цитатой В цитатник    |    Не показывать комментарий
 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку