Omra Sweater |
OMRA - “”, , , . - , , ( ) . ( ).
11.5-14.5 . 4 14.5 .
●
COTTON MERINO FINE CONCEPT BY KATIA, DK/Light weight, (70% , 30% virgin, 75 / 25 )
335 (375, 420, 440, 500) (535, 575, 610, 640)
1005 (1125, 1260, 1320, 1500) (1605, 1725, 1830,1920)
No. 87 mauve
●
• 2.5 , 80
• 2.5 , 60 .. ()
• 3.0 , 80 , , .
• 3.0 , 60 .. ()
●
•
•
•
• 4.5 , 64 pcs. ()
●
: 30 ./36 .. = 10 , 2.5 ,
: 23 ./31 .. = 10 , 3.0 ,
●
1 (2, 3, 4, 5) (6, 7, 8, 9)
:
70 (80, 90, 100, 110) (120, 130, 140, 150)
●
83.5 (94, 104.5, 111.5, 121.5) (132, 142.5, 151.5, 161.5)
●
• .
• - , .
• , , .
• , .
●
• ( / , ./., /)
•
• ..
• ( )
●
=
= ..
. =
2 .. = 2 .
.. =
= . : 1 ., . . . (-: https://www.youtube.com/watch?v=9r6_AVbmmtU)
1 = 1 . : , , . .
1 = 1 . : , , . . .
1 = 1 . : , , . .
1 = 1 . : , , . . .
=
. =
=
=
=
.. =
=
1 = 1 .
1 = 1 .
=
=
= , , . – 1 . ., 1 . ., , , . . . ( , 1 . )
=
. =
.. =
=
4-2 = 4 2 : 4 . ; 4 . 3 ( ) ; 4 . , .. .., 2 ., 1 .. (. : https://www.youtube.com/watch? v=ONSuKXvhOKw )
●
:
, . , ( 1 ., ) ..
.. 1: (1 ., 1) ..
.. 2: (1, 1 .) ..
.. 3: .. 1
.. 4: .. 2
. :
.. 5: (1 .., 1 .) ..
.. 6: .. 5 - : https://www.youtube.com/watch? v=daebO9c5qDo&t=192s
:
1. .
2. .
3. , .
4. .
5. .
6. .
7. , .
8. .
9. . . 2 ..
10. . , , .
:
.. 1: (1 ., 1) ..
.. 2: (1, 1 .) ..
« » - : https://www.youtube.com/watch?v=UzUapAv3cQM
:
1:
, ( “” . 4), 168 (176, 184, 176, 184) (192, 184, 192, 192) . .., , . ( ).
2 .. ([1 .., 1 .] ..).
, . ( . ):
[(1 .., 1 .) x 13 (14, 15, 15, 15) (16, 16, 17, 18), 1 ..] (= 27 (29, 31, 31, 31) (33, 33, 35, 37) . ), , [(1 ., 1 ..) x 4 (4, 4, 3, 4) (4, 3, 3, 2)] (= 8 (8, 8, 6, 8) (8, 6, 6, 4) .) , .. 1 1 (= 20 . ), , [(1 .., 1 .) x 16 (17, 18, 17, 18) (19, 18, 19, 19), 1 ..] (= 33 (35, 37, 35, 37) (39, 37, 39, 39) . ), , [(1 ., 1 ..) x 2,1 .] (= 5 . . ), , [(1 .., 1 .) x 16 (17, 18, 17, 18) (19, 18, 19, 19), 1 ..] (= 33 (35, 37, 35, 37) (39, 37, 39, 39) . ) , .. 1 1 (= 20 . ), , [(1 .., 1 .) x 4 (4, 4, 3, 4) (4, 3, 3, 2)] (= 8 (8, 8, 6, 8) (8, 6, 6, 4) .), , [(1 .., 1 .) x 14 (15, 16, 16, 16) (17, 17, 18, 19)] (= 28 (30, 32, 32, 32) (34, 34, 36, 38) . ). 14 . . 182 (190, 198, 190, 198) (206, 198, 206, 206) .
, . :
1:
.. 1 ( ): ([ M, 1, ] x 2, . .. 1, , 1, M, 1, , M, , 1, M, 1, , . .. 1, , 1, M, , 1, (8 . ).
.. 2 ( ): . , . .. 1 .
.. 3: .. 2.
.. 4 ( ): ([ M, 1, ] x 2, . .. 1, , 1, M, 1, , M, , 1, M, 1, , . .. 1, , 1, M, , 1, (8 . ).
.. 5: .. 2.
.. 6: .. 2.
.. 1-6 4 (80 . , 262 .), .. 6 4 .
- (-, -, 4, 5) (6, 7, 8, 9):
.. 1 ( ): ([ M, 1, ] x 2, . .. 1, , 1, M, 1, , M, , 1, M, 1, , . .. 1, , 1, M, , 1, (8 . ).
.. 2 ( ): ([ M, 1, ] x 2, . .. 1, , 1, M, 1, , M, , 1, M, 1, , . .. 1, , 1, M, , 1, (8 . ).
.. 1-2 - (-, -, 0, 2) (5, 10, 12, 15) (): - (-, -, 16, 48) (96, 176, 208, 256) . ; - (-, -, 206, 246) (302, 374, 414, 462).
- (2, 3, 4, 5) (6, 7, 8, 9):
.. 1 ( ): ([ M, 1, ] x 2, . .. 1, , 1, M, 1, , M, , 1, M, 1, , . .. 1, , 1, M, , 1, (8 . ).
.. 2 ( ): . , . .. 1 .
.. 3 ( ): ([ M, 1, ] x 2, . .. 1, , 1, M, 1, , M, , 1, M, 1, , . .. 1, , 1, M, , 1, (8 . ).
.. 4: .. 2.
.. 1-4 - (6, 8, 7, 7) (7, 4, 3, 3) (): - (112, 144, 128, 128) (128, 80, 64, 64) . ; : - (302, 342, 334, 374) (430, 454, 478, 526).
.. 4 - (4, 0, 2, 0) (0, 0, 0, 0) ().
2:
. ( . : (1 ., 1 ..) x 2, 1 .) .
.. . :
37 (43, 49, 49, 53) (61, 65, 69, 77) ., 1, , (1 ., 1 ..) x 2, 1 ., , 1, 13 (17, 21, 19, 25) (31, 33, 35, 39) ., , . .. , , 13 (17, 21, 19, 25) (31, 33, 35, 39 .), 1, , (1 ., 1 ..) x 2, 1 ., , 1, 75 (87, 99, 99, 107) (123, 131, 139, 155) . ( 2 ), 1, , (1 ., 1 ..) x 2, 1 ., , 1, 13 (17, 21, 19, 25) (31, 33, 35, 39) ., , . .. , , 13 (17, 21, 19, 25) (31, 33, 35, 39) ., 1, , (1 ., 1 ..) x 2, 1 ., , 1, 38 (44, 50, 50, 54) (62, 66, 70, 78) . : 270 (310, 350, 342, 382) (438, 462, 486, 534).
1 (2, 3):
.. 1: *. M, , (1 ., 1 ..) x 2, 1 ., , . M, , . .. , , . M, , (1 ., 1 ..) x 2, 1 ., ; * 1 , . .
.. 2-5: .. 1.
.. 6 ( ): *. M, 1, , (1 ., 1 ..) x 2, 1 ., , 1, . M, , . .. , , . M, 1, , (1 ., 1 ..) x 2, 1 ., , 1; * 1 , . (8 . ).
.. 1-6 2 (24 . , 294 (334, 374) .). .. 1 2 (5, 5) ().
- (-, -, 4, 5) (6, 7, 8, 9):
.. 1: *. M, , (1 ., 1 ..) x 2, 1 ., , . M, , . .. , , . M, , (1 ., 1 ..) x 2, 1 ., ; * 1 , . .
.. 2: .. 1.
.. 3 ( ): *. M, 1, , (1 ., 1 ..) x 2, 1 ., , 1, . M, , . .. , , . M, 1, , (1 ., 1 ..) x 2, 1 ., , 1; * 1 , . (8 . ).
.. 1-3 - (-, -, 6, 8) (6, 8, 9, 7) (): - (-, -, 56, 72) (56, 72, 80, 64) . ; : - (-, -, 398, 454) (494, 534, 566, 598).
.. 1 - (-, -, 5, 3) (3, 2, 2, 5) ().
83 (95, 107, 115, 127) (139, 151, 161, 173) . , 54 (62, 70, 74, 90) (98, 106, 112, 116) . (17 (21, 25, 27, 35) (39, 43, 46, 48) . , 20 . 17 (21, 25, 27, 35) (39, 43, 46, 48) . ), 5 . ; : 294 (334, 374, 398, 454) (494, 534, 566, 598).
3:
, . :
.. 1: 41 (47, 53, 57, 63) (69, 75, 80, 86) . M, , 1 ., 1 .., 1 ., . 58 (66, 74, 78, 94) (102, 110, 116, 120) . , 7 . , 1 ., 1 .., 1 ., , 83 (95, 107, 115, 127) (139, 151, 161, 173) . M, , 1 ., 1 .., 1 ., . 58 (66, 74, 78, 94) (102, 110, 116, 120) . , 7 . , 1 ., 1 .., 1 ., , 42 (48, 54, 58, 64) (70, 76, 81, 87) . (192 (216, 240, 256, 280) (304, 328, 348, 372) .).
, ( . : (1 ., 1 ..) x 6, 1 .) :
.. 2: 41 (47, 53, 57, 63) (69, 75, 80, 86) . M, , (1 ., 1 ..) x 6, 1 ., 83 (95, 107, 115, 127) (139, 151, 161, 173) . , , (1 ., 1 ..) x 6, 1 ., 42 (48, 54, 58, 64) (70, 76, 81, 87) . .
, .
(: , . , , . . . . ; , . . ):
1 (): 41 (47, 53, 57, 63) (69, 75, 80, 86) . , , .
2 (): , , 41 (47, 53, 57, 63) (69, 75, 80, 86) . , , 42 (48, 54, 58, 64) (70, 76, 81, 87) . , , .
3: , , . , , . M, , . . 2 .., 1 .., .
4: , 1 .., 1 ., , . , , . , , . . , 1 .., .
5: , 1 . ., 1 ., , . , , . M, , 1 ., 1 .., . . 2 .., 1 .., .
6: , (1 .., 1 .)x2, , . , , . , , 1 ., 1 .., . . , 1 .., .
7: , (1 .., 1 .)x2, , . , , . M, , (1 ., 1 ..)x2, . . 2 .., 1 .., .
8: , (1 .., 1 .)x3, , . , , . , , (1 ., 1 ..)x2, . . , 1 .., .
9: , (1 .., 1 .)x3, , . , , . M, , (1 ., 1 ..)x3, . . 2 .., 1 .., .
10: , (1 .., 1 .)x4, , . , , . , , (1 ., 1 ..)x3, . . , 1 .., .
11: , (1 .., 1 .)x4, , . , , . M, , (1 ., 1 ..)x4, . . 2 .., 1 .., .
12: , (1 .., 1 .)x5, , . , , . , , (1 ., 1 ..)x4, . . , 1 .., .
13: , (1 .., 1 .)x5, , . , , . M, , (1 ., 1 ..)x5, . . 2 .., 1 .., .
14: , (1 .., 1 .)x6, , . , , . , , (1 ., 1 ..)x5, . . , 1 .., .
:
. ..: , (1 .., 1 .) x 6, , . , , . M, , (1 ., 1 ..) x 6, . . 2 .., , . M, , . 2 .., (1 .., 1 .) x 6, , . .
. :
.. 1: *. M, , (1 ., 1 ..) x 6, 1 ., ; * 1 , . .
.. 1 31 (31, 31, 31, 30) (30, 30, 29, 29) ( 5 ).
M, , 5 ([1 .., 1 .] ..).
, (. “” . ).
4:
, , ((1 .., 1 .) x 3, 1 ..) , . 1 . . . , . . : 1 .., 1 ., , 17 (21, 25, 27, 35) (39, 43, 46, 48) ., , . .. , , 17 (21, 25, 27, 35) (39, 43, 46, 48) ., , 1 ., 1 .., . 1 . . . .
. ( ):
.. 1: (1 ., 1 ..) x 6, 1 ., , . M, , . .. , , . .
.. 1, *.. 46 (30 16, 12, 7) (6, 5, 5, 5) .. 1 (3, 6, 8, 14) (11, 12, 10, 6) , 0 (0, 0, 0, 0) (5, 4, 4, 4) .. 0 (0, 0, 0, 0) (5, 8, 11, 17) ; 2 (6, 12, 16, 28) (32, 40, 42, 46) . ; : 65 (69, 71, 71, 75) (79, 79, 83, 83) .
*.. : (1 ., 1 ..) x 6, 1 ., , 2 .., . M, , . .. , , . 2 . , .
37 ( 10 )
, .. , . . :
(1 ., 1 ..) x 6, 1 ., , (1 .., 1 .) 1 . M, 1 .., , (2 .., 1 ..) x 6, 2 .., , (1 .., 1 .,) 1 . , 1 .. ( : 58 (62, 64, 64, 68) (72, 72, 76, 76) .)
10 . , (. “” . ). ( 1 . , .. ..). .
:
.
, , , , (. ).
( .. 1 - 50, .. 3):
.. 1: (, 1 ..) × 6, . (20 .)
.. 2: (2 ., 1 ..) × 6, 2 .
.. 3: 2 ., 4-2, (2 ., 1 ..) × 2, 2 ., 4-2, 2 .
.. 4: .. 2.
.. 5: 2 ., 1 .., (2 ., 4-2) × 2, 2 ., 1 .., 2 .
.. 6: .. 2.
.. 7: 2 ., ( 4-2, 1 ., B) × 2, 4-2, 2 .
.. 8: .. 2.
.. 9: 2 ., 1 .., 2 ., 4-2, 1 ., B, 4-2, 2 ., 1 .., 2 .
.. 10: .. 2.
.. 11: (2 ., 1 ..) × 2, 1 ., B, 4-2, 1 ., B, (1 .., 2 .) × 2.
.. 12: .. 2.
.. 13: .. 9.
.. 14: .. 2.
.. 15: .. 7.
.. 16: .. 2.
.. 17: .. 5.
.. 18: .. 2.
.. 19: .. 3.
.. 20 - 22: (2 ., 1 ..) × 6, 2 .
.. 23: 1 ., , 3 ., 2 .., 3 ., 2 ., 3 ., , 3 ., , 1 .
.. 24: 1 ., 8 ., 2 ., 8 ., 1 .
.. 25: 1 ., 1 ., , 3 ., , 2 ., 2 ., 2 ., 2 .., 3 ., , 1 ., 1 .
.. 26: .. 24.
.. 27: 1 ., 2 ., , 3 ., , 1 ., 2 ., 1 ., 2 .., 3 ., , 2 ., 1 .
.. 28: .. 24.
.. 29: 1 ., 3 ., , 3 ., , 2 ., 2 .., 3 ., , 3 ., 1 .
.. 30: .. 24.
.. 31: 1 ., 4 ., , 3 ., , 2 .., 3 ., , 4 ., 1 .
.. 32: .. 24.
.. 33: 1 ., , 3 ., , 3 ., 2 ., 3 ., 2 .., 3 ., , 1 .
.. 34: .. 25.
.. 35: .. 27.
.. 36: .. 29.
.. 37: .. 33.
.. 38: .. 24.
.. 39: .. 25.
.. 40: .. 24.
.. 41: .. 27.
.. 42: .. 24.
.. 43: .. 29.
.. 44: .. 24.
.. 45: .. 31.
.. 46: .. 24.
.. 47: (2 ., 1 .) × 6, 2 .
.. 48 - 50: (2 ., 1 ..) × 6, 2 .
: | / |