Ад Я не решалась написать этот пост два года. Два факинских года, за которые мой ми...
Как быстро снизить высокое давление - (0)Как быстро снизить высокое давление Массаж. Плавными медленными движениями массируйте ...
Рыба, морепродукты, яйца /Аюрведа/ - (0)Рыба, морепродукты, яйца /Аюрведа/ Тема: Продукты питания, 24 сентября 2009 г. В преды...
Как не толстеть. АЮРВЕДА (режим питания) - (0)Как не толстеть. АЮРВЕДА (режим питания) Цитата сообщения tet369 Прочитать целикомВ свой ц...
Влияние Асц на профессию. - (0)Влияние Асц на профессию. ♦ АСЦ в знаке ОВНА: указывает на организаторские ...
Моделирование физики мозга_2 |
Квантовая Магия, том 3, вып. 3, стр. 3126-3155, 2006
А.С. Холманский
3. Квазифотон
3.1. Типы квазифотонов
Для описания свойств различных конденсированных сред широко используют понятие квазичастица [33]. Поскольку содержание воды в мозгу достигает ~75% [15], его можно считать высококонцентрированным коллоидным раствором. Для описания механизмов энергоинформационных процессов, лежащих в основе физики мозга, удобно использовать понятие квазифотона, как обобщение ЭМ-кванта. Таким образом, квазифотон является носителем избыточной энергии электромагнитного поля, локализованной на электроне или на системе электронов той или иной упорядоченной атомно-молекулярной структуры. Предшественником квазифотона могут быть фотон или ЭМ-квант, в случае их поглощения системой. В зависимости от энергии фотона и электронной структуры системы метрика, время жизни и судьба квазифотона варьируются в широких пределах. Физика квазифотонов генетически наследует законы атомно-молекулярной спектроскопии и свойства возбужденных состояний молекул различных типов (электронные, колебательные, трансляционные, вращательные) [34]. Смешанным электронно-ядерным конфигурациям возбужденных состояний будут отвечать вращательные и колебательные квазифотоны, а чисто электронным возбужденным состояниям – оптические квазифотоны. Примерами оптического квазифотона служат, ЭМ-стимул генерирующий ПД, экситон или электронно-возбужденное состояние молекулы. Колебательный квазифотон в упругой связанной структуре подобен фонону. Вращательный квазифотон в системе связанных ядерных или электронных спинов можно отождествить с магноном [33]. Квазифотоны могут быть свободными и связанными в зависимости от свойств среды и механизма взаимодействия ее элементов. Таким образом, метрико-динамические характеристики квазифотонов будут определяться типом химических связей и видом межмолекулярных взаимодействий, которые определяют степень упорядоченности среды.
Энергия квазифотонов различных типов меняется в широком диапазоне, верхней границей которого можно считать энергию квазифотона стимулирующего генерацию ПД в перехвате Ранвье (~10–19 Дж). За низший предел энергии квазифотона можно принять энергию вихревого ЭМ-поля, генерируемого движением глаз. Плотность данной энергии при В ~ 4 пТ имеет порядок:
Е = В2/(2μоμ) ~ 10–23 Дж/см3 или ~0,01 кДж/моль в см3. (11)
Степень влияния данного поля на магнитно-восприимчивые микро и макро структуры и среды мозга будет определяться величиной плотности энергии:
Е = (М В)/2,
где М - удельная намагниченность (удельная плотность магнитных моментов - m), равная:
М = Σ m.
В случае кольцевых токов любой природы (J) m = JΔS, где ΔS – площадь поверхности, охватываемой током. Причем поляризационный эффект магнитного поля может усиливаться под влиянием теплового движения частиц среды [36].
Сравнима с величиной (11) энергия теплового эффекта от светового раздражения глаз крысы, который проявляется повышением локальной температуры зрительной коры мозга на ~0,06о С [11]. Величина энергии квазифотона отвечающего данному кванту тепловой энергии составит ~10–24 Дж или ~10–3 кДж/моль. В диапазон 10–3 – 102 кДж/моль попадает энергия биогенного МКВ-излучения (λ = 100 – 1 мм, Е = 10–3 – 0,1 кДж/моль) [37]; в том числе и энергия резонансных частот воды (λ ~ 6 мм, Е = 0,02 кДж/моль) [38]. Известно [3], что энергия активации процессов ассоциирования сахаров и квантов биогенного МКВ-излучения на один-два порядка меньше тепловой энергии и сравнима по порядку величины с (11). Отсюда следует, что в процессах самоорганизации жидких сред мозга ключевую роль играют квазифотоны вращательного типа и физика лобно-височных долей, ответственная за когнитивные функции мозга, непосредственно связана с электрофизикой глаз.
3.2. Метрика квазифотона
Элементарной структурной ячейкой жидкой воды является динамический тетраэдр, образованный из четырех молекул воды, связанных между собой водородными связями. Пятая молекула воды или соразмерная с ней молекула или атом могут находиться в центре тетраэдра, тогда он называется центрированным тетраэдром (Рис 13). Благодаря водородным связям, вода эффективно взаимодействует с растворенными молекулами, расширяя тем самым спектр их физико-химических свойств. Данная особенность водных коллоидов и гелей особенно важна для физики мозга, поскольку его межклеточные объемы, как правило, сравнимы с размерами биомолекул, клеток и органелл [35].
В силу этого следует предполагать существенное влияние эпитаксиального эффекта на процессы, регулирующие межнейронные и нейроглиальные взаимодействия. Известно, например, что в химических реакциях, протекающих в оптически активной среде или на поверхности кварца, возрастает выход хиральных продуктов. Увеличению эпитаксиального эффекта мембран и стенок различных органов, помимо посредничества воды, очевидно, способствуют связанные или адсорбированные поверхностью полипептидные и полисахаридные цепочки, а также микроворсинки (Рис 12) [15, 17]. Эпитаксиальный эффект и присутствие хиральных сахаров сказывается на кинетике обратимой адсорбции ионов и нейромедиаторов на поверхностях мембран нейронов как в перехватах Ранвье, так и в синапсах [14].
Рис. 12. Схема мембраны и выходящих из нее полисахаридных и полипептидных цепочек.
Метаболиты, имеющие заряд, диполь, механический или магнитный моменты, а также хиральность, влияя на электродинамическую постоянную (εμ) среды, метрику и динамику надмолекулярных структур, могут в широких пределах менять кооперативные свойства растворов, эффективность генерации и механизм движения квазифотонов. Это относится, прежде всего, к ионам (Na+, K+, Cl–, Р3+) (Таблица 1) и к молекулам, играющим роль переносчиков, акцепторов и преобразователей квазифотонов (кислород, углекислый газ, вода, сахара, АТФ, нейромедиаторы, гормоны, ферменты).
Рис 13. Схема слияния двух зеркально симметричных подвижных ЭФ (ν/g-пар) в покоящийся квазифотон с тетраэдрической метрикой (а) и схема электронных орбиталей молекулы воды (б).
Основным механизмом движения квазифотонов будет их резонансное поглощение и переизлучение молекулами среды, метаболитами и надмолекулярными структурами. Главным элементом трехмерной метрики жидкой среды и большинства органических метаболитов служит тетраэдр, электронно-ядерной матрицей которого является sp3-гибридизированная система электронных орбиталей атомов углерода, азота и кислорода. Следовательно, квазифотон, локализованный на том или ином метаболите, с наибольшей вероятностью будет иметь метрику изоморфную геометрии sp3-гибридизации.
Используя представление о ν/g-парах, покоящуюся ЭФ или локализованный квазифотон с тетраэдрической метрикой можно получить по схеме, показанной на Рис 13. Правила комбинирования и конденсации ЭФ (ν/g-пар) [6] позволяют моделировать и рассчитывать метрику квазифотонов различных типов, в том числе изоморфных метрике sp- и sp2-гибридизированных атомных орбиталей. Энергия квазифотонов, связанных с π-электронами, будет меньше энергии квазифотонов, отвечающих колебательно-вращательным возбуждениям атомов или деформациям σ-скелета. Низшие колебательные уровни молекулы углекислого газа (О=С=О), имея энергию от 10–21 до 10–20 Дж, могут заселяться за счет поглощения тепловых квантов (kT). Специфика расположения уровней допускает их инверсную заселенность, что позволяет использовать углекислый газ в качестве активной среды лазера (λ ~ 10 мкм). В жидких средах предрасположенных к самоорганизации молекула СО2 может быть донором колебательных квазифотонов для молекул с карбоксильной группой (–НСО). Аналогично, молекулы с ароматическими циклами будут акцепторами квазифотонов, отвечающих конформационным колебаниям изоморфных им насыщенных углеродных циклов и гетероциклов. Высокая активность, например, стероидных гормонов производных холестерола, имеющих конденсированные гексановые цикла, может быть обусловлена насыщенностью их молекул квазифотонами с sp3-метрикой (Рис 13). При этом изоморфные фрагментам гормонов ароматические молекулы (бензол, антрацен, пирен), эффективно дезактивируя гормоны и искажая их метаболические функции, могут инициировать канцерогенез [39].
Таблица 1. Ядерно-электронные характеристики элементов.
Элемент |
Характеристики ядра |
Основное электр. состояние Атома |
Ионный радиус (нм)
|
|||
Спин (I) |
Магнитный момент (× μн) |
Магнитная воспри-имчивость (C13= 1,00) |
Квадру-польный момент (Q×1028, м2) |
|||
Натрий 11Na23 |
3/2 |
2,22 |
525,0 |
0,12 |
[Ne]3s1 |
0,098 |
Калий 19K39 |
3/2 |
0,39 |
2,7 |
0,055 |
[Ar]4s1 |
0,133 |
Хлор 17Cl35 17Cl37 |
3/2 |
0,82 0,68 |
20,2 3,8 |
– 0,08 – 0,06 |
[Ne]3s22р5 |
0,182 |
Фосфор 15Р31 15Р32 (14 дней) |
1/2 1 |
1,13 –0,25 |
377 |
– – |
[Ne]3s23р2 |
0,044
|
3.3. Метаболические квазифотоны
Для унификации языка биоэнергетики соотнесем с величинами энергий химических связей, колебательно-вращательных и тепловых движений атомов и молекул энергию квазифотонов соответствующей метрики. Дееспособность мозга обеспечивает энергия ферментативные реакции окисления глюкозы в митохондриях и анаэробного ее гликолиза в глазном яблоке. В этих реакциях ЭМ-энергия химических связей глюкозы и кислорода трансформируется в энергию макроэргических связей АТФ, которая в последующих реакциях гидролиза АТФ преобразуются в кинетическую и колебательно-вращательную энергию метаболитов и молекул среды. Химическая активность этих молекул реализуется затем через действия их энергии возбуждения, которую и моделируют квазифотоны соответствующей энергии и метрики.
Суммарный энергетический эффект всех стадий ферментативной реакции окисления глюкозы в митохондриях имеет своим пределом тепловой эффект реакции горения глюкозы в атмосфере кислорода:
С6Н12О6 + 6 О2 → 6 СО2 + 6 Н2О + 2800 (кДж/моль). (12)
Реакция окисления глюкозы в митохондриях сопряжена с реакцией синтеза АТФ, при этом на одну молекулу глюкозы приходится 38 молекул АТФ [40]. При анаэробном гликолизе глюкозы образуются только две молекулы АТФ и две молекулы хиральной молочной кислоты, которые, очевидно, вносят свой вклад в хиральность энергетики глаз и мозга. Максимальный выход метаболической энергии даст гидролиз 38 молекул АТФ по схемам:
АТФ → АДФ + Р~P + 36 (кДж/моль)
Р~Р → Р + Р + 33,4 (кДж/моль).
Полная энергия макроэргических связей 38 молекул АТФ равна 2640 кДж/моль, что составляет ~95% от предельного значения энергии сгорания одной молекулы глюкозы. Это говорит о высокой эффективности ферментативных реакций трансформации квазифотонов, соответствующих σ-связям С-С, С-О-С, С-Н глюкозы в квазифотоны, локализованные на двух макроэргических связях Р~О- в АТФ.
Предположим, что квазифотоны равновероятно распределяются по связям продуктов реакций окисления глюкозы и гидролиза АТФ, тогда предельные значения энергий квазифотонов, отвечающих данным реакциям будут равны 1/12 и 1/152 от теплового эффекта реакции (12), равного 4,5 10–18 Дж, то есть ~3 10–19 и ~3 10–20 Дж, соответственно. Если к этим квазифотонам применить универсальное соотношение между энергией и характерным размером (r) дискретного элемента материи (ν/g-пара, элементарная частица) [6]:
Е ~ ħc/r , (13)
то для квазифотона, действующего в виде кванта метаболической энергии, получим радиус ~1 мкм, сравнимый с радиусом аксона.
Метаболические квазифотоны могут принимать активное участие в ферментативном синтезе белков и нуклеиновых кислот, а также в репликации и транскрипции ДНК. Можно представить участие квазифотонов в расплетении двойной спирали ДНК следующим образом. В области репликативной вилки сахарофосфатный остов цепи ДНК резонансно поглощает метаболические квазифотоны колебательного типа. Возрастает упругость цепей, что и приводит к разрыву водородных связей между ними. Учитывая, что на два сахарофосфатных звена спирали ДНК приходится одна водородная связь и ее энергия равна ~19 кДж/моль (3 10–20 Дж), получится, что для ее разрыва достаточно поглощения цепью ДНК одного метаболического квазифотона.
Присутствие изоморфных аминокислотных фрагментов в пептидных цепях белка и в структуре нейромедиаторов (глицин, ацетилхолин, глутаминовая кислота, дофамин, серотонин и др.) позволяет предложить резонансный механизм передачи квазифотона колебательного типа при контакте нейромедиатора с рецептором. Из-за наличия в структурах медиаторов электроно-, протонодонорных и акцепторных групп их основное электронное состояние характеризуется внутримолекулярным переносом заряда Д+δ-С-А-δ. Здесь Д – аминогруппы, метоксигруппа, бензольное кольцо и А – карбонильная и гидроксильные группы, а С – цепочка из σ-связей. Этот фактор и предрасположенность медиаторов к образованию водородных связей лежат в основе их физической и химической сорбции на рецепторах постсинаптических мембран. Рецептор, принимая или отдавая квазифотон при контакте с нейромедиатором, меняет свою конформацию, запирая или открывая при этом кальциевый канал мембраны.
4. Термодинамика мозга
Мозг в целом можно считать реакционной термодинамической системой, находящейся в стационарном состоянии. Приток энергии и сброс избыточного тепла мозгом сбалансированы в узком диапазоне температур от ~37о (центр мозга) до ~36оС (кора мозга) [15]. Этот градиент температуры, будучи обусловлен более низкой температурой внешней среды, может играть существенную роль в ориентировании тепловых потоков внутри мозга. Аналогичный градиент температуры наблюдается и для тела, она имеет максимум в прямой кишке, а минимум в поверхностном слое клетчатки и мужских яичках [15]. Диапазон оптимальной температуры метаболизма находится в пределах значений температур, для которых изобарная теплоемкость чистой воды имеет минимум [41]. Особенности термодинамики фазовых переходов водных растворов в процессе филогенеза легли в основу механизма адаптации живых систем, которая, по сути, представляет собой изоэнергетические переходы или переходы с энергией активации порядка kΔT (при ΔT ~ 0,1 – 1 К) между состояниями разной степени упорядоченности белковых молекул или однородных, молекулярно-клеточных ансамблей. Снижение энтропийной составляющей внутренней энергии живой системы сопряжено с резонансным поглощением ею кванта внешней ЭМ- или нейтринной энергии, который она преобразует в активный метаболический квазифотон [3]. Жидкостная среда обеспечивает отвод кванта тепловой энергии (энтропии) за границы системы, а действием квазифотона реализуется функция той или иной структуры мозга, включающей в себя упорядоченную подсистему. Энергия, выделяемая или поглощаемая при таких переходах, может оказаться намного порядков меньше kT. В неравновесных условиях колебания отдельных макромолекул могут синхронизироваться, в частности, посредством электромагнитного поля [36].
Таким образом, термодинамика мозга сочетает равновесно-стационарную термодинамику метаболизма и неравновесную термодинамику нейросети, «рабочего телом» которой является Бозе-газ квазифотонов. Соответственно, внутренняя энергия U мозга как функция его состояния будет зависеть в общем случае от температуры (или энтропии S), от тензора деформаций G, зависящего от внутричерепного давления, от магнитного момента M отдельных метаболитов и макроструктур, от суммарного момента количества движения ядер и атомов L и от поляризация среды Р. Следовательно, полный дифференциал внутренней энергии U = U (S, G, M, L, P) будет иметь вид:
dU≡ TdS – ПdG + ВdM + DdP + FdJ, (14)
где Т – абсолютная температура системы; П – тензор давлений; F – вектор ориентационной поляризации системы спинов или моментов импульса [42]. В выражении (14) член FdL характеризует работу, связанную с ориентационной поляризацией системы ядерных спинов или моментов импульса атомов и молекул (подобно тому, как членыDdPи BdM определяют работу, связанную с поляризацией и намагничиванием системы).
Ориентационные и поляризационные эффекты существенную роль играют в инициации фазовых переходов в однородных газовых и жидкостных системах мозга и организма. Высокую чувствительность данных систем к параметрам входящим в (14) обеспечивает хиральность метаболитов (в основном сахаров [3, 29]) и физико-химические особенности молекулярной и жидкой воды. Такие системы формируются в следующих структурах и средах организма и мозга:
– желудок, матка, трахея, черепно-лицевые пазухи, полость эпифиза;
– оболочки и желудочки мозга, венозные синусы, глазное яблоко;
– кровеносная и лимфатические системы;
– паренхима органов (легкие, печень, селезенка, яички, женская грудь);
– подкожная клетчатка, соединительная и костная ткань.
Все перечисленные системы в норме функционируют в двух режимах – стационарном (квазиравновесном) и неравновесном. Первый характерен для бодрствующего состояния организма и мозга не занятого мыслительной работой, а второй режим соответствует состоянию сна или творческой работе. В первом режиме обмен энергией со средой происходит непрерывно, а во втором – квантуется. Механизм акцепции кванта внешней энергии в фазовом переходе кооперативной системы иллюстрируют процессы конденсации паров воды в точке росы и квантовой Бозе-конденсации.
Акцептированию квантов энергии МКВ-диапазона или нейтринной энергии в указанных средах способствует снижение температуры организма во сне на ~1К, а также пониженные температуры стекловидного тела глаз, периферийной (депонированной) крови и яичек. В акцепции хиральных квантов нейтринной энергии большую роль играют сахара, содержание которых в крови возрастает в утренние часы до восхода солнца. В это время нейтринная составляющая солнечного излучения отфильтровывается от ЭМ-излучения поверхностным сегментом коры земного шара (Рис 18). Важную роль в акцепции энергии стекловидным глазом играет полисахарид - гиалуроновая кислота [3, 29]. Почти половина всей гиалуроновой кислоты организма человека сосредоточено в его коже, где она располагается в соединительной ткани дермы между волокнами коллагена и эластина, а также в клетках рогового слоя корнеоцитах. В дерме содержится 70% воды, что составляет ~20% всей воды организма [15]. Поглощаемая организмом энергия, конденсируясь на метаболитах в составе жидких сред (кровь, спинномозговая жидкость), передается в мозг по нейрогуморальным и воздушным каналам (из легких).
Поглощение внешнего ЭМ-кванта и формирование квазифотона из энергоформ в общем случае подчиняется фрактально-резонансному механизму и принципу изоэнергетичности. С учетом (13) принцип изоэнергетичности для резонансных взаимодействий и фазовых переходов в кооперативных системах можно выразить соотношением [6]:
ћC/r = N (ћC/R), (15)
здесь rхарактеризует метрику квазифотона, а R – энергоформы и r = R/N; число Nпринимает любые значения меньшие числа Авогадро при конденсации ЭФ в квазифотоны и достигает числа Авогадро при участии ЭФ в слабых взаимодействиях [39].
5. Физика организации мозга
5.1. Функциональная иерархия мозга
Функциональная иерархия мозга человека строится на физических свойствах следующих его структур: неокортекс, базальные ядра, лимбический мозг, таламус, гипоталамус, гипофиз, эпифиз, ретикулярная формация и мозжечок. К отдельным элементам иерархии следует отнести жидкостные системы мозга (кровеносная и ликворная), а также весь комплекс внутричерепных нервных коммуникаций, выделив в нем мозолистое тело, зрительный нерв и лучистости таламуса.
5.1.1. Кора больших полушарий
В структуре коры различают поверхностные специализированные зоны и шесть слоев [15]. Самый верхний слой образуют горизонтально ориентированные апикальные дендриты пирамидных клеток и аксоны звездчатых клеток, которые обеспечивают внутрикорковые связи между соседними нейронами. Горизонтальной ориентации диполей нейронов данного слоя соответствует динамичное электрическое поле, которое может играть роль защитного ЭМ-экрана. Остальные пять горизонтов коры структурируются сначала в нейро-глиальные модули (диаметр ~ 100 – 150 мкм), а затем, в колонки диаметром до 1 мм и со средним числом нейронов ~100 шт [15]. Синхронизация электрической активности нейронов в модулях и колонках приводит к формированию в пучках отходящих от них аксонов залповых импульсов. Процессу суммирования ПД в залпы может предшествовать конденсация по (15) внешних ЭМ-квантов или квазифотонов стимулов ПД на отдельных нейронах в модулях, а затем в колонках. Например, при конденсации ~100 квазифотонов с характерным радиусом 100 мкм в залповом импульсе может образоваться квазифотон радиуса 1 мкм (энергия ~10–19 Дж), который выдаст колонка на сопряженную с ней структуру подкорки или инжектирует в ликвор.
Внешний слой коры вместе со слоем ликвора в подпаутинном пространстве мозга, очевидно, играют роль сферического ЭМ-фильтра или МКВ-резонатора (R ~ 7 – 10 см), поглощение которого имеет несколько максимумов и в том числе для длин волн внешних ЭМ-квантов (λ) порядка радиуса сферы [37]. В тканях мозга длина волны МКВ-кванта снижается в ~7 раз, и глубина его проникновения оказывается одного порядка с λ [37].
Можно предположить, что горизонтальное расслоение коры (Рис 14) связано с дисперсией интенсивности поглощения веществом мозга биогенных МКВ-квантов. И при толщине коры ~2 – 5 мм ее расслоение на три миелиновых слоя (Рис 14) может быть филогенетически обусловлено действием трех типов ЭМ-квантов с длиной волны от 1 см до 10 см. Предположив, что из ЭМ-квантов с λ ~ 1 см формируются квазифотоны-стимулы ПД, по формуле (15) можно оценить их число (N), исходя из радиуса квазифотона в 100 мкм. Оценка Nдает величину ~ 1 см/100 мкм = 100, равную числу пирамидных нейронов в колонке.
с 14. Микрофотография среза коры прокрашенного красителем, поглощаемым миелином.
5.1.2. Таламус, желудочки мозга
Геометрическим и энергоинформационным центром мозга является двудольный таламус, имеющий ось, ортогональную плоскости III-го желудочка (межталамическое сращение). Его веерные нервные связи с корой (лучистость, Рис 15) при синхронизации своей электрической активности могут порождать макроскопический ЭМ-вихрь с магнитным вектором, направленным по оси продолговатого мозга.
Рис 15. Лучистости таламуса
Аналогичным образом, залповые импульсы в нервных волокнах гиппокампа будут генерировать ЭМ-вихрь с магнитным вектором параллельным оси межталамического сращения. Тонкий слой ликвора в желудочках мозга насыщенный метаболитами под влиянием эпитаксиальных эффектов и в условиях сна, очевидно, переходит в жидкокристаллическое состояние, приобретая свойство конденсора-синтезатора макроскопических квазифотонов мозга или внешних энергоформ (в том числе и нейтринных). Физико-химическая связь ликвора III-го желудочка с железами эпифизом и гипофизом обеспечивает их участие в механизмах адаптации, гомеостаза и размножения. Тела обеих желез погружены в ликвор цистерн мозга, а их горлышки-воронки контактируют с ликвором III-го желудочка (Рис 16). Причем, если эпифиз участвует в формировании энергоинформационных кодов ликвора и венозной крови, то гипофиз только транслирует некоторые из них на информационный уровень кровеносной системы.
Рис 16. Цистерны мозга (заштрихованы). Черные стрелки обозначают токи венозной крови
5.1.3. Эпифиз
В работах [1, 6] высказана гипотеза, что филогенез зрительной системы и эпифиза как третьего глаза обусловлен воздействием на биосферу излучения Солнца не только электромагнитной, но и нейтринной природы. Согласно стандартной модели Солнца доля нейтринной энергии составляет около 3% от ЭМ-энергии и поэтому для выявления ее эффектов в дневное время ошибка эксперимента или статистики не должна превышать ~1%. Поскольку нейтрино практически не поглощается косным веществом, оно легко проходит сквозь Землю, магнитное поле которой может только приводить к дисперсии или фокусировке падающего на нее потока нейтрино. Таким образом, можно ожидать существенный вклад нейтринной энергии в физику мозга в ночные часы и когда мозг пребывает состоянии сна. Очевидно, что сама потребность во сне филогенетически обусловлена нейтринным фактором, под влиянием которого в жидких средах организма и развились механизмы конденсации квантов биогенной энергии различной природы. Особенно большое значение данная энергетика имеет для развития эмбриона в чреве матери, а затем младенца грудного возраста. Помимо функциональных специфических особенностей мозга женщины [32] ее организм в период лактации интенсифицирует процесс акцепции нейтринной энергии с участием метаболитов, входящих в состав грудного молока. Возможно, что этой физической особенностью материнского молока и обусловлен быстрый темп развития и структуризации неокортекса у млекопитающих, как в филогенезе, так и в онтогенезе.
Нельзя также исключать и действие на живые системы в ночное время солнечных ЭМ-квантов, отраженных Луной и планетами (Меркурием, Венерой, Марсом) (Рис 17). Интенсивность этих излучений, очевидно, сопоставима с интенсивностью потока нейтринной энергии, а их суммарное действие будет иметь максимальный эффект тогда, когда Марс и Венера находятся в противостоянии с Землей. Поскольку атмосфера Венеры состоит в основном из СО2, то спектр отраженного (переизлученного) ею света будут промодулирован колебательными частотами СО2, что обеспечит резонансное возбуждение молекул СО2 в земной атмосфере и в средах насыщенных СО2 (морские воды, литосфера, венозная кровь). В определенных космических ситуациях на биосферу в ночное время могут оказывать влияние и галактические излучения электромагнитной и нейтринной природы. Вся эта гамма физических факторов филогенеза и отразилась в особенностях физики и химии спящего мозга, о чем, в частности, свидетельствуют данные хронобиологии мозга (Рис 18).
Одним из путей метаболизации нейтринной энергии может служить реакция синтеза в эпифизе нейрогормона мелатонина, играющего ключевую роль в процессе полового созревания и умственного развития, а также в формировании спектрально-энергетических характеристик поверхностного слоя кожи. Процесс синтеза мелатонина модулирован циркадными ритмами и подавляется ярким светом. Мелатонин выбрасывается в ликвор III-го желудочка и в венозную кровь, причем его максимальная концентрация в ликворе наблюдается около трех часов ночи, достигая на порядок большей величины, чем его содержание в крови [43]. Отметим, что в три часа ночи минимальное значение имеют артериальное давление и температура организма, что способствует процессу самоорганизации жидких сред и повышает тем самым эффективность акцептирования ими квантов биогенной энергии [3, 29]. В процессах акцепции и утилизации энергии помимо мелатонина участвуют хиральные сахара и фосфор. Их концентрации достигают максимума также в ранние утренние часы до восхода Солнца [15] (Рис 18). Летом в это же время выпадает роса. Насыщение нейтринной энергией жидких сред интенсифицирует ферментативное окисления сахаров, что в сумме с повышением концентрации фосфора дает увеличение скорости синтеза АТФ. Таким образом, нейтринная энергия в ночные часы может исполнять роль хирального кинетического фактора биоэнергетики.
Рис 19. Схемы структур серотонина и мелатонина
Филогенетическим и химическим предшественником мелатонина является нейрогормон серотонин (Рис 19). Замена заместителей в кольце и при азоте при переходе от серотонина к мелатонину существенно меняет его физико-химические свойства. Благодаря -С=О группе мелатонин будет акцептировать квазифотоны от СО2 венозной крови. Кроме того, мелатонин может служить акцептором квантов энергии, которые конденсируются в стекловидном теле глаза и в ликворе в состоянии сна.
В метаболизации биогенной энергии вместе с мелатонином могут участвовать и другие нейрогормоны. В первую очередь это относится к дофамину, о чем свидетельствует, например, такой опыт. Прием в течении двух недель мотилиума (антагонист периферических дофаминовых рецепторов) и омепразола (ингибитор водородной помпы) наряду с положительным эффектом привел к снижению либидо, нарушению сна (регулярные пробуждения в три часа ночи) и усилению к этому времени аллергической реакции кожи (крапивницы). Синхронизация данных расстройств с кинетикой синтеза мелатонина (Рис 18) позволяет связать их с гипертрофией гормональной функции мелатонина, причиной которой может быть концентрационный дисбаланс между мелатонином и дофамином.
Поскольку эпифиз полностью погружен в несжимаемый ликвор и рядом с ним находится крупный венозный узел, включающий большую мозговую вену Галена (Рис 16), то объем эпифиза, а значит, объем и давление в его внутренней полости [44] будут пульсировать. При этом на этапе расширения на молекулах газа в объеме и на структурах внутренней поверхности полости будут конденсироваться кванты биогенной энергии, которые на этапе сжатия могут транслироваться вместе с метаболитами в паренхиму эпифиза, активизируя в ней клеточный метаболизм, а также в ликвор III-го желудочка.
5.2. Кинетические параметры физики мозга
Ритмика некоторых физических процессов в мозгу может быть обусловлена периодическими метаболическими реакциями. К таким процессам, очевидно, относится пульсация нейроглии – 12 секунд фаза напряжения и 240 с фаза расслабления, при этом меняется их объем, набухают и отбухают их отростки [45]. Колебания химической активности синапсов имеют постоянную времени порядка 100 мс, которая соответствует суммарной длительности возбуждающих и тормозных постсинаптических потенциалов ~30 и ~70 мс, соответственно. Учитывая доминирование циркадных ритмов в хронобиологии, можно полагать, что в основе механизма работы ритмоводителя мозга или сердца лежит связь электрической активности специальных нервных клеток с тем или иным периодическим явлением электромагнитной природы геофизического или космического масштаба [46]. Примерами таких явлений могут служить спонтанное реликтовое излучение, пульсации геомагнитного поля и его периодические возмущения Солнцем, Луной и другими планетами [47]. Высокая чувствительность пейсмекеров к слабым внешним сигналам достигается за счет кооперативных эффектов в упорядоченных пучках нейронов супрахиазматических ядер, пучка Гиса и ядер ретикулярной формации.
Рис 20. Амплитудно-частотные соотношения биоэлектрических сигналов [46].
Спектр частот ритмики мозга отвечает электрической активности различных структур в иерархии мозга (Рис 20). К устойчивым ритмам спектра ЭЭГ относят: дельта-ритм (0,5-4 Гц); тэта-ритм (5-7 Гц); альфа-ритм (8-13 Гц); мю-ритм – по частотно-амплитудным характеристикам сходен с альфа-ритмом, но преобладает в передних отделах коры больших полушарий; бета-ритм (15-35 Гц) и гамма-ритм (выше 35 Гц). Мю-ритм, возможно связан с электромагнитной активностью глаз и с ритмикой сканирования ЭМ-вихрем лобных долей мозга. Причиной других ритмов могут быть электромагнитные колебания, захватывающие кору и различные структуры подкорки. В принципе, для каждого типа колебаний в спектре ЭЭГ можно выделить в мозгу емкостно-индукционные LС-структуры и смоделировать их взаимосвязь эквивалентной схемой колебательного контура, имеющего по (6) свою частоту.
Например, альфа-ритм, отвечая фоновой электрической активности коры, поддерживает на должном уровне стабильность связей неокортекса и таламуса. При удалении таламуса или отсечении его связей с корой альфа-ритм исчезает. Право-левые доли таламуса и коры полушарий можно представить разноименными обкладками двух сферических конденсаторов, а нервные связи между ними (лучистости таламуса) будут моделировать омические связи и индуктивные катушки в эквивалентных схемах контуров, работающих на частоте альфа-ритма (альфа-контур) (Рис 21). Асимметричность индуктивных элементов альфа- контуров правого и левого полушария может лежать в основе их функциональной спецификации. Частоту колебаний в альфа-контуре, по-видимому, задают ядра-пейсмекеры ретикулярной формации, тесно связанной с таламусом. Характерное время перестроек, синхронизованных с альфа-ритмом, составляет ~100 мс.
Рис 21. Эквивалентные колебательные контуры, моделирующие альфа-ритмы мозга. L, L*, R– индуктивные и омические модели лучистости таламуса (знак *) означает зеркальную инверсию хиральных структур правого полушария); r– межталамическое сращение; С и U– емкость и разность потенциалов между таламусом и корой.
Токи в нервных структурах ретикулярной формации и продолговатого мозга могут генерировать вихревые магнитные поля в структурах варолиева моста и мозжечка (Рис 22). Внешний вид данного образования, в принципе, изоморфен в)-модели трансформированного колебательного контура (Рис 1). Следовательно, пейсмекеры ретикулярной формации могут резонансно настраиваться на колебания стоячей ЭМ-волны геомагнитного поля (см. П. 2.4.2) и на регулярные возмущения геомагнитного поля Солнечной активностью или планетами.
Рис 22. Мозжечок и продолговатый мозг Рис 23. Структуры базальных ганглий.
Время усвоения одного бита зрительной информации составляет 15 – 50 мс [28]. Время элементарного мыслительного акта лежит в пределах 150 – 300 мс [48]. Из оценки скорости усвоения смысла читаемого текста, состоящего из известных слов, следует, что на осознание смысла одного слова в среднем требуется около 200 мс. Эту постоянную времени можно связать с тэта-ритмом, который манифестирует кортико-лимбические взаимодействия, регулирующие эмоции и умственную деятельность [15]. Пара эквивалентных колебательных контуров, имеющих частоту тэта-ритма (тэта-контур), будет подобна альфа-контурам (Рис 21), только взамен таламуса и его лучистости будут фигурировать соответствующие структуры гиппокампа и базальных ганглий (скорлупа, хвостатое ядро) (Рис 23). Поскольку характерные времена передачи ПД в пределах структур мозга по порядку величины не превышают ~10 мс, то можно предположить, что скорость мыслительного акта лимитируется химическим механизмом кодирования информации, требующим активации синаптических связей.
Характерное время кинетики расходования энергоресурса мозга в процессе мышления и последующего его восстановления можно связать с кинетикой метаболизма глаз, энергетикой которых определяется интенсивность стимулирующего воздействия на лобно-височные доли мозга ЭМ-вихря (Рис 11). Метаболизм стекловидного глаза лимитирован скоростью его гидродинамики, характерное время которой равно ~900 с. И для восстановление данного ресурса глаз достаточно дневного сна длительностью ~15 мин. Филогенетически эта постоянная времени энергетики мозга может быть обусловлена биогенным действием продуктов распада термолизованного нейтрона [6], время жизни которого равно ~900 с.
5.3. Нелокальные квантовые корреляции
5.3.1. Сознание и память.
Физика сознания или самосознания, будучи тождественна физике мышления и речи, базируется на способности мозга реагировать на внешние сигналы, преобразовывать их в электромагнитные коды нейросети, запоминать и узнавать эти коды, трансформировать и синтезировать из них матрицы мыслеформ. Все эти операции возможны при наличии в мозгу физико-химических механизмов прочтения-активации и запоминания-консервации кодов. Процесс считывания и распознавания самой мыслеформы подразумевает наличие устойчивой динамичной эталонной системы кодов-реперов, составляющей физическую основу самосознания субъекта. Данная система формируется в процессе филогенеза и онтогенеза по генетической программе при непрерывном воздействии на мозг через органы чувств (зрение, слух, осязание, обоняние, вкус) всего спектра физических и социальных организующих факторов. При отсутствии последних онтогенез мозга нормального от рождения ребенка вообще не выходит на ментальный уровень. С другой стороны слепоглухонемые от рождения дети, имея только тактильный контакт с учителем, в состоянии сформировать достаточно адекватную эталонную систему кодов-реперов, позволяющую им познавать мир и общаться с людьми.
Генетическая программа кодов-реперов, определяющих индивидуальность человека, закладывается уже при формировании метрики генетического материала в процессе оплодотворения женской клетки. Развертывание данной программы на этапе эмбриогенеза подчинено закону фрактально-резонансного действия [6], который реализуется через физические механизмы энергоинформационного обмена и памяти, лежащие в основе психо- или духовно-физического изоморфизма.
Генные коды, составляя базовый уровень памяти, действуют на протяжении всей жизни человека, определяя расовые, половые и ментальные особенности его физики мозга. Следующий уровень памяти составляют безусловные рефлексы, принципы его организации закладываются на этапе морфогенеза. На этом же этапе создается химическая основа ресурса памяти первоначальных сенсорных впечатлений и ощущений. В пределах ресурса бессознательной памяти под действием социальных факторов формируется массив эталонной системы кодов-реперов сознания. Механизмы запоминания и извлечения из памяти необходимого кода-репера сочетают электрофизику и биохимию мозга с физикой динамичных систем квазифотонов, локализованных на структурно-функциональных элементах мозга.
Первый, генный уровень памяти реализуется самопроизвольно на молекулярно-клеточном уровне при синтезе ядерных ДНК, которые, в свою очередь, программируют рост и функции нервной клетки. Вообще, термодинамические особенности третичной структуры белковых молекул (ДНК, гемоглобин, ферменты и др.) позволяют им конденсировать тепловые или метаболические квазифотоны, трансформируя их в энергию колебательно-вращательных движений атомов характерных аминокислотных групп. При достижении энергии возбуждения порогового уровня она передается по фрактально-резонансному механизму на метаболит, инициируя тем самым его участие в химическом синтезе вполне определенной структуры. Так может осуществляться транслирование генной информации с молекулярного на макроскопический уровень организации живых систем.
Следующие уровни памяти образуются путем развития устойчивых нейронных связей между зонами неокортекса и базальными ганглиями, лимбическим мозгом, таламусом и мозжечком. Специализация такого блока памяти определяется функциональной доминантой второго его элемента. Учитывая синхронность морфогенеза лобно-теменных долей мозга и мозжечка, предположим, что этот блок является главным хранилищем базовых кодов-реперов сознания. Фоновая активность данного блока памяти обеспечивает непрерывность ориентации соматической и ментальной составляющих сознания в пространстве и времени. Ритмику данного режима сознания может задавать альфа-контур, обеспечивая связь между зрительной корой, мозжечком и лобными долями (Рис 24).
Рис 24. Схема строения (а) и связей с корой больших полушарий (б) мозжечка – многослойного «кристалла» базового блока памяти мозга. Пунктирами показаны слои и уровни организации мозжечка
Переключение сознания на режим мышления сопряжено с заменой альфа-ритма на тэта-ритм и, соответственно, активацией блока памяти ментальных кодов-реперов, ключевыми структурами которого, очевидно, являются базальные ганглии. Можно предположить, что функциональная асимметрия мозга и сама логика мышления есть результат синергизма физики хиральных индуктивно-магнитных элементов тэта-контура (хвостатое ядро), органа обоняния (гиппокампа) и слуха (Аммонов рог) в каждом из полушарий. Участие в физике мышления емкостно-электрического элемента органа зрения (сетчатки), очевидно, заключается в активации базового блока памяти действием на лобно-височные доли мозга ЭМ-вихря глаз. Аналогичную функцию активации теменной и затылочной (предклинья, Рис 11е) областей коры мозга, по-видимому, выполняет второй емкостно-электрический элемент зрительной системы – наружное коленчатое тело. В нем вполне может идти генерация квазифотонов-фосфенов при слиянии-рекомбинации зеркально-симметричных ЭФ от правого и левого глаза.
Физика мышления интегрирует в себе в той или иной степени функции всех структур мозга. Морфологической базой для такого объединения служит жидкостная система мозга. На начальном этапе эмбриогенеза вся нервная система локализована в нервной трубке [49], внутренний слой которой в дальнейшем превращается в односвязную внутреннюю поверхность желудочков мозга и центрального канала спинного мозга. Впоследствии ликвор, заполняя эти объемы и сообщаясь с цистернами и наружными оболочками мозга (Рис 16), берет на себя роль интегрирующей «шины», на которую, так или иначе, замкнуты все функциональные элементы нервной системы.
5.3.2. Механизм квантовых корреляций
Следуя логике работы [50], иерархию физических состояний структурно-функциональных блоков мозга смоделируем многоуровневым фракталом из локальных динамичных систем квазифотонов. Базовой единицей данного фрактала, начиная от уровня нейросети, кончая полушариями мозга, будет LC-структура, изоморфная колебательному контуру (Рис 8, 21). Геометрические и электрофизические параметры LC-структур будут определять тип и энергию динамических квазифотонов, а их действие формально должно удовлетворять фрактально-резонансному принципу [6]. Из цепочек LC-контуров состоят самовозбуждающиеся (реверберирующие по принципу обратной связи) замкнутые цепи в нейросетях, которые могут соответствовать образам восприятия или образам оперативной памяти. Данные возбуждения можно смоделировать затухающими колебаниями, связав их цикличность и частоту с добротностью и резонансными частотами LC-контуров, а также с длиной и степенью разветвленности петли нейросети. Для моделирования кооперативных свойств систем однотипных квазифотонов помимо электродинамики можно, в принципе, привлечь квантовую механику (Бозе-конденсация, спутанность состояний), физику волновых и нелинейных процессов (интерференция, голография, когеренция).
Предельное время психической реакции или мыслительного акта имеет порядок ~100 мс. За это время в мозгу задействуются десятки тысячи синаптических связей и активизируются десятки зон коры и структур подкорки. Даже при условии параллельности операций в нейросети и высокой скорости ассоциативных и рефлексивных связей между зонами коры и блоками памяти для обеспечения целенаправленности функциональной активности мозга в нем должен работать квантовый механизм поиска и отбора информации, кинетика которого не должна ограничиваться скоростями переноса вещества и энергии. Морфологической основой данного механизма является односвязность водной среды мозга и фрактальность его ЭМ-структуры. К примеру, каждый слой базового блока памяти (Рис 24), состоящий из пары – древовидная клетка Пуркинье и лиановидный нейрон [49], можно считать изоморфным всему фракталу нервных связей неокортекса и позвоночника вкупе с блуждающим нервом (вагус). Изоморфизм нервная клетка – макроструктура обеспечивает высокую оперативность базового блока памяти кодов-реперов при предельно большом значении его удельной емкости.
Взаимосвязь квантовых систем может быть двух типов. Первый предполагает наличие перекрывания волновых функций электронов двух пространственно разделенных структур нервной системы мозга. В энергоинформационном обмене при этом участвуют как квазифотоны различного типа (солитоны, фононы, ЭМ-кванты), так и электрон или протон (туннельные переходы). Такая связь, по сути, аналогична механизму сальтаторной проводимости и эффективна для химически связанных систем. Второй тип связи – нелокальных квантовых корреляций [7] предполагает информационный обмен между изоморфными структурами мозга по механизму фрактально-резонансной связи [6]. Данный механизм можно распространить и на обмен информацией между мозгом и внешней средой. Действует он и на молекулярном уровне при репликации ДНК, и на социально-биологическом уровне между матерью и детьми (особенно с дочерью).
В общем случае для реализации механизма нелокальных корреляций системы должны удовлетворять двум требованиям. Первое состоит в том, что в зародышевом состоянии они должны образовывать односвязную систему, находящуюся в квантовом состоянии, определяемом тем или иным типом взаимодействия (ядерное, электромагнитное, слабое, гравитационное, биологическое, социальное). Примеры: позитроний, радиоактивное ядро, протозвезда, молекула ДНК, нервная трубка, эмбрион и организм матери. Второе требование называется несепарабельностью или запутанностью состояний химически не связанных систем и заключается в наличии механизма квантовой корреляции физических характеристик состояний. Для перечисленных выше систем их дочерними коррелирующими подсистемами будут, соответственно: два фотона, продукты радиоактивного распада, двойные звезды или звездно-планетарные системы, расщепленная ДНК, мозжечок и неокортекс, мать и дитя.
Механизм квантовой запутанности подразумевает сохранение информационной связи между дочерними подсистемами на уровне взаимодействий, определяющих собственную целостность подсистем. Универсализм квантовой запутанности генетически обусловлен подчинением процесса образования дискретных форм материи, а затем и элементарных частиц механизму бутстрапа [6]. На уровне элементарных частиц и ядер, на котором нелокальные корреляции экспериментально наблюдаются [7], природа информационных взаимодействий еще не установлена, можно только предполагать, что их кинетика лимитирована скоростью передачи импульса в физическом вакууме (эфире) ~1022 см/с [6]. С такой же скоростью, очевидно, осуществляется обмен информацией на уровне социальных и космических подсистем.
За основу механизма запутанности структурно-функциональных подсистем мозга, можно принять односвязность его водной основы, благодаря которой между системами квазифотонов возможен обмен информации со скоростью V= C/n(5). Подчинение данного обмена фрактально-резонансному принципу действия сводит вероятностный его характер к целенаправленному отбору между изоморфными структурами пары, для которой уровень запутанности состояний квазифотонов максимален.
6. Заключение
Дж. Максвелл полтора века назад связал развитие фундаментальной физики с познанием мозга [5]. Более 30 лет назад Ф. Крик предположил, что молекулярная биология вполне может установить биохимические основы самых сложных духовно-ментальных функций мозга, достигнув при этом уровня «биохимической теологии» или «теохимии» [51]. Однако в 2000-ом году Ф.Крик уже воздержался от прогнозирования развития биохимии мозга, подчеркнув лишь большое«значение нелинейных динамических систем в биологии на всех уровнях». Данное уточнение вполне можно принять за адаптацию идеи Дж. Максвелла к биологическим объектам и заключить, что переход биохимии мозга в «теохимию» может осуществиться только одновременно с заменой материалистической парадигмы физики на духовную [1]. Другими словами физика мышления может состояться только как естественная теология или теофизика [52]. Эволюция естествознания уже имеет один диалектический скачок в виде перехода от классической физики к физике квантовой. Очевидно, что в недрах естествознания назрел следующий скачок – от квантовой физики к физике духа или теофизике. При всей драматичности такого скачка для физиков-идеалистов и психологов-материалистов он неизбежен. С учетом этого в настоящей работе, проанализировав физические особенности структур мозга и его кинетических характеристик, показали принципиальную возможность формализации физики мышления с помощью экстраполяций достоверных закономерностей классической и квантовой физики на субэлементарный уровень организации материи.
http://www.quantmagic.narod.ru
Рубрики: | МОЗЪК/ ЕПИФИЗА |
Комментировать | « Пред. запись — К дневнику — След. запись » | Страницы: [1] [Новые] |