С той поры как появилась письменность, люди стали стремиться ее упростить, но так, чтобы смысл оставался понятным для любого читателя. Переход от иероглифической записи текста к буквенной резко упростил как сам механизм написания послания, так и чтение написанного. Если разобраться детальнее, то математика представляет собой то же самое письмо, которое нужно максимально унифицировать, чтобы написанное было понятно всем людям на планете. Для этой унификации используются 10 цифр и некие математические знаки или символы.

Подобная унификация делает восприятие математических текстов гораздо проще, нежели использование букв вместо цифр и слов вместо символов.

Знаки сложения и вычитания

В 15 веке символы «+» и «-» уже активно использовались человечеством, правда откуда они точно взялись и кто их ввел в обиход достоверно неизвестно. Предполагают, что эти символы были введены в оборот виноторговцами. Когда часть вина из бочки продавали, то владелец наносил на тару горизонтальную черточку, чтобы отметить новый уровень. Затем такие черточки появлялись ниже и ниже. При доливании вина ранее нанесенные горизонтальны черточки пересекали вертикальной черточкой. Так и вышло, горизонтальная черточка «-» означала убавление, а 2 перпендикулярных «+» — прибавление.

Есть и альтернативная версия появления символа «+». Поначалу для записи выражения «a + b» использовали текст «a et b». Латинское слово «e» означает буквально союз «и». То есть было выражение «a и b». Со временем для ускорения записи отказались от «е», а «t» утратило свой хвостик и несколько сократилось в размерах.

Умножение

Символы умножения.

Символы умножения.

До 17 века умножение чисел обозначали латинской буквой «М», от слова мультипликация. Но в 17 веке часть математиков вслед за англичанином Уильямом Отредом стали использовать для обозначения умножения косой крестик, который используется и в наши дни. Но не все согласились с нововведением. Предлагались для умножения звездочка «*», буква «х» и даже символ прямоугольника в начале выражения и запятая в конце.

Готфрид Лейбниц оставил заметный след в истории многих областей знаний, именно он призвал отказаться от косого крестика, поскольку его легко спутать с буквой «х» и предложил для умножения использовать точку. Однако математики, приняв обозначение Лейбница, предпочли саму точку, по возможности, не писать, впрочем, отсутствие косого крестика или точки никого не смущает, все понимают и так, что перед нами 2 сомножителя.

Деление

Знаки деления.

Знаки деления.

Знак деления в виде горизонтальной черты дроби использовали еще такие математики древности как Диофант и Герон, а также арабские ученые Средневековья. Уже упоминавшийся Отред предложил использовать не горизонтальную черту, а косую. Приложил к делению свою руку и Лейбниц, он придумал для обозначения этого действия использовать двоеточие «:». Все упомянутые варианты сохранились до нашего времени.

Знак равенства

Знак равенства.

Знак равенства.

Знак «=» предложил врач и математик из Уэльса Роберт Рекорд в 1557 году, правда, начертание было значительно длиннее современного. Как объяснил смысл знака сам ученый, что невозможно представить нечто более равное, чем 2 параллельных отрезка. Вот параллельность отрезков и мешала привычному нам знаку равенства. В конце концов пришли к соглашению знак параллельности также обозначать 2 параллельными отрезками, но уже развернутыми вертикально.

Знак бесконечности

Знак бесконечности

Знак бесконечности

Символ бесконечности в виде лежащей на боку несколько вытянутой цифры 8 предложил использовать в первой половин 17 века англичанин Джон Уоллис. Правда, француз Рене Декарт предлагал этот знак использовать для обозначения равенства, но сей проект был забаллотирован.

Знак неравенства

Знак неравенства

Знак неравенства

Символ «не равно» в виде знака равенства перечеркнутого косой чертой скорее всего первым начал применять Леонард Эйлер, во всяком случае он активно использовал этот знак в своих сочинениях. Две волнистые линии для знака приблизительного равенства придумал математик из германии Зигмунд Гюнтер. Было это в 1882 году.

Знак процента

Знак процента

Знак процента

Знак % для обозначения сотой части чего-либо появился сразу в нескольких работах 17 века различных математиков. Как он был придуман не ясно, есть предположение, что не обошлось без ошибки наборщика, который вместо сокращения «cto» (обозначавшего сотую часть) набрал деление ноль на ноль — 0/0.

Интеграл

Знак интеграла.

Знак интеграла.

Развитие интегрального исчисления в 17 веке требовало введение специального значка интеграла. Интегралы вычислялись как пределы интегральных сумм, поэтому Лейбниц в своей рукописи использовал для его обозначения латинскую букву «S», обозначавшую тогда в математике сумму. Но все же сумму требовалось как-то отличать от интеграла, вот «S» и вытянули по вертикали.

Матрицы

Можно встретить как обозначения с круглыми скобками «(…)», так и обозначения с квадратными скобками «[…]». Реже можно встретить обозначения с двойными прямыми линиями «||…||»)

В 1843 году англичанин Артур Кэли работал над теорией матриц. Чтобы обозначить матрицу он числа в нее заключенные стал помещать в пространство ограниченное с 2 сторон, для чего использовал по 2 прямые линии. Но современные математики предпочитают для матриц использовать большие круглые скобки. Все же идея Кэли продержалась до нашего времени. Если матрица ограничена не круглыми скобками, а вертикальными чертами (по одной с каждой стороны), то каждый математик знает, сто перед ним определитель.

Тригонометрические функции

Современные обозначения «sin», «tg» (tan), «sec» ввел датчанин Томас Финке в 1583 году. Однако датский ученый писал эти символы с точкой на конце. От этой точки избавился в 1632 году Уильям Отред.

«Cos», «ctg» (cot), «cosec» (csc) — эти символы встречались у различных авторов, среди которых следует упомянуть Джонаса мура (1674 год) и Сэмюэля Джейка (1696 год), но они их писали также с точкой на конце. Точку у косинуса убрал в 1729 году Леонард Эйлер, а у котангенса и косеканса Авраам Кестнер в 1758 году.

Обратные тригонометрические функции с приставкой «arc» начал обозначать австрийский математик Карл Шерфер. Однако в среде ученых это обозначение прижилось только после выхода в свет работ Лагранжа. Правда немецкая и английская школы долгое время старались обозначать эти функции как 1/sin и аналогично.

Источник