|
rss_habr
Теория вероятностей в машинном обучении. Часть 2: модель классификацииПятница, 03 Февраля 2023 г. 14:19 (ссылка)
В предыдущей части мы рассматривали вероятностную постановку задачи машинного обучения, статистические модели, модель регрессии как частный случай и ее обучение методом максимизации правдоподобия. В данной части рассмотрим метод максимизации правдоподобия в классификации: в чем роль кроссэнтропии, функций сигмоиды и softmax, как кроссэнтропия связана с "расстоянием" между распределениями вероятностей и почему модель регрессии тоже обучается через минимизацию кроссэнтропии. Данная часть содержит много отсылок к формулам и понятиям, введенным в первой части, поэтому рекомендуется читать их последовательно. В третьей части (статья планируется) перейдем от метода максимизации правдоподобия к байесовскому выводу и его различным приближениям. Данная серия статей не является введением в машинное обучение и предполагает знакомство читателя с основными понятиями. Задача статей - рассмотреть машинное обучение с точки зрения теории вероятностей, что позволит по новому взглянуть на проблему, понять связь машинного обучения со статистикой и лучше понимать формулы из научных статей. Также на описанном материале строятся более сложные темы, такие как вариационные автокодировщики (Kingma and Welling, 2013), нейробайесовские методы (M"uller et al., 2021) и даже некоторые теории сознания (Friston et al., 2022). Читать далееhttps://habr.com/ru/post/714670/?utm_source=habrahabr&utm_medium=rss&utm_campaign=714670
|
LiveInternet.Ru |
Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат О проекте: помощь|контакты|разместить рекламу|версия для pda |