|
Rewiever
Почему токамак - российский бренд. Как водка...Четверг, 18 Апреля 2019 г. 10:28 (ссылка)
Токамак раскроет тайны горячей плазмы В эти дни на базе НИЦ «Курчатовский институт» создается токамак принципиально нового типа, в недрах которого можно будет получить плазму более высоких энергетических значений, чем обычно. Установка, находящаяся на этапе сборки, напоминает инопланетный космический корабль с распахнутыми настежь черными глазницами иллюминаторов. Однако пройдет несколько месяцев, и в его металлическом «сердце» поселится раскаленная плазма. Тогда здесь начнутся эксперименты, которые позволят ученым пролить свет на многие фундаментальные вопросы и решить ряд важных прикладных задач.
Что это за вопросы и каких результатов стоит ожидать от работы этой уникальной мегаустановки - наш разговор с Петром Павловичем Хвостенко, доктором технических наук, научным руководителем Курчатовского комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт». — Петр Павлович, мы с вами находимся в зале, где создается новый токамак. Расскажите, пожалуйста, каковы цели и задачи этого проекта. — Он называется токамак Т-15МД, то есть Т-15 модернизированный. Известно, что последние годы строится большой международный токамак - реактор ITER. И одна из наших задач - поддержка программы ITER. Вторая задача, не менее важная - построить гибридный реактор, который станет источником термоядерных нейтронов. Наш токамак Т-15МД - прототип будущей большой установки, с помощью которой можно будет решить проблему замыкания топливного цикла в атомной энергетике. Ведь сегодня считается, что основного топлива для тепловых атомных станций хватит лет на 50–60. — Поэтому встала задача: как возобновить топливо для атомных тепловых реакторов? — Токамаки как источники термоядерных нейтронов как нельзя лучше подходят для решения этой задачи. Токамак должен генерировать термоядерные нейтроны, которые облучают топливо, окружающее плазму. В этом случае исходом топлива становится торий-232, которого очень много в земной коре. После облучения нейтронами мы получаем уран-233, который и будет топливом для атомных станций. — Чем же термоядерный источник нейтронов лучше классической термоядерной электростанции? — Разница вот в чем. В термоядерном источнике нейтроны получаются от взаимодействия пучка быстрых атомов с основной плазмой, при этом температура плазмы не должна доходить до 120–150 млн градусов, как в чистом энергетическом реакторе. Она должна иметь температуру не более 30–50 млн градусов. — Неужели это мало? — Немного. На сегодняшних токамаках с помощью гиротронов легко получить и более высокие температуры. Но если вы имеете источник быстрых атомов, которые взаимодействуют с основной плазмой, то в этом случае появляются нейтроны, с помощью которых мы можем изучать физику взаимодействия процесса. — На каком веществе будет работать токамак? — На водороде. Поэтому нейтронов здесь не будет, но все вопросы технологии процесса мы отработаем. Причем он может работать как для нужд ITER, так и для задач гибридного реактора. — Внешне ваш токамак как будто из фантастического фильма. Кажется - сейчас полетит. — Да, это действительно нечто космическое. А когда входишь внутрь, создается полное ощущение полета. На сегодня мы окончательно смонтировали тороидальную магнитную систему, камеру высотой 3,5 м, и монтажники входят туда, ставят диагностику, меняют элементы, которые будут взаимодействовать с плазмой. Когда плазма поселится в «сердце» токамака, ощущение фантастики усилится. — Токамаков в мире существует немало. Чем ваш отличается от других? — Наш токамак уникален. Он имеет достаточно низкое аспектное отношение, то есть отношение величины большого радиуса плазменного шнура к малому радиусу. Мы сможем получать более высокое давление плазмы. Такой комбинации низкого аспектного отношения и магнитного поля в 2 Тл нет нигде в мире. — Кто придумал такую модель установки? Конечно, у истоков этих работ на современном этапе стоял Е.П. Велихов, инициировавший международный проект ITER. Э.А. Азизов, который долгое время был директором Курчатовского института физики токамаков, выдвинул идею установки, а я рассчитывал всю магнитную конфигурацию. И когда она стала более или менее понятна, мы обратились к главному конструктору Научно-исследовательского института электротехнической аппаратуры им. Д.В. Ефремова (НИИЭФА) в Санкт-Петербурге. Они делали всю проработку конструкции токамака. А изготовление всех элементов и узлов взяла на себя брянская группа компаний машиностроения и приборостроения, где в рекордно короткие сроки была создана практически вся магнитная система. Это тоже уникальный результат междисциплинарного сотрудничества. Наши коллеги, в том числе зарубежные, не верят, что можно было все это сделать менее чем за два года. — Что дает такое сочетание физических характеристик в работе вашей установки? — Мы можем получать более высокие значения бета. Это отношение газокинетического давления плазмы к давлению магнитного поля. Это значительно повышает эффективность использования магнитного поля. Кроме того, обычно при повышении давления развивается неустойчивость, которая разрушает плазменный шнур, и поэтому давления выше достичь нельзя. А вот в компактном токамаке, где все сжато, величина бета может достигать более заметных величин, а это очень важно. Мы сохранили магнитное поле, достаточно высокое для токамака. Это удалось потому, что мы использовали медный проводник с небольшой добавкой серебра. Что это дало? Во-первых, мы имели проводник с проводимостью чистой меди, а по прочности он как нержавеющая сталь. Это важно, потому что при работе токамака действуют очень большие растягивающие силы, и если бы это была чистая медь, то предел прочности был бы превышен. А когда мы перешли на другой тип проводника, все получилось. — Как вы думаете, когда установка заработает в полную силу? — Физический пуск установки запланирован на декабрь 2020 г. Мы работаем в тесном контакте с ГК «Росатом» в рамках федеральной целевой программы «Ядерные энерготехнологии нового поколения». По всем расчетам, к концу апреля мы окончательно соберем нашу установку, потом подключим вакуумную откачку, заварим камеру, всё проверим. Вероятно, к лету она будет готова с точки зрения подключения коммуникаций. А потом мы всё это разовьем, сделаем антресоли, чтобы физики могли ставить диагностику. — Физики будут работать на антресолях? — Да, по всему периметру вокруг токамака у нас будут установлены красивые двухуровневые антресоли. Это будет деревянная конструкция, близко подходящая к токамаку. На первом этапе диагностики пройдут вакуумные испытания на стендах. Затем они будут пристыковаться к патрубкам (их здесь 152) и работать непосредственно с токамаком. — Пристыковываться? Выходит, не зря я увидела здесь космическую аналогию? — Да, именно пристыковываться. Хотя, конечно, люди будут находиться в атмосфере Земли, не будут летать, но сравнение с космическим экспериментом тут вполне уместно. Наблюдение за плазменным процессом, который будет происходить внутри камеры, — это, в принципе, то же самое, что изучение процессов, происходящих на Солнце или в звездах. И вопросов здесь пока больше, чем ответов. — Насколько опасна такая работа? — Больших нейтронных потоков здесь не будет. Во время разряда образуется пучок ускоренных электронов, которые попадают на стенку, образуется жесткое гамма-излучение, но интенсивность его очень невелика. К тому же, когда работает установка, в зале никого нет. У нас существует мощная биозащита - стены из свинца и бетона. В процессе работы токамака в отличие от тепловых атомных станций большой наведенной радиационной активности нет, поскольку нет и нейтронов. И вообще токамак по сравнению с АЭС более естественный с точки зрения природоподобия. Президент НИЦ «Курчатовский институт» М.В.Ковальчук, как идеолог развития природоподобных технологий, всегда отмечает, что токамак - это природоподобная энергетическая установка по своей сути. — Почему? — Именно потому, что мы воссоздаем такие же реакции, какие происходят на Солнце и в звездах. Природа распорядилась получать энергию путем синтеза легких ядер - и ровно то же самое мы делаем в токамаке. В отличие от реакторов, делящих тот же уран. Ведь такого процесса не увидишь в природе. — Каких ожидаете результатов? — В первую очередь, мы должны собрать большую базу данных как по инженерии, так и по физике для проектирования будущих термоядерных станций и гибридных реакторов. За это время нам нужно обобщить всю информацию, чтобы потом меньше оставалось вопросов с точки зрения проекта будущих больших реакторов. — А с фундаментальной научной точки зрения каких ожидаете открытий? — Физика плазмы — наука, до конца не изведанная. Надо найти пути к уменьшению различных влияний и повышению устойчивости плазмы. Эти задачи идут в поддержку ITER, потому что следующий шаг - это демонстрационный реактор, большая экспериментальная установка, где мы ждем по-настоящему прорывных результатов.
— Помните, как у Высоцкого: «А с этой плазмой дойдешь до маразма». Правда ли, что плазма самое сложное состояние вещества? — Абсолютная правда. Состояние это сложное и во многом непонятное. Идея токамака была изначально завязана на плазме, и родилась она в этих стенах, в Курчатовском институте, еще в 50-е гг. прошлого века. И.Е. Тамм и А.Д. Сахаров выдвинули идею, как с помощью магнитного поля можно удерживать высокотемпературную плазму, а потом у нас в институте начались эти исследования. После испытания водородной бомбы в 1953 г. И.В. Курчатов говорил о том, что термоядерная энергия должна не разрушать, а созидать. И когда появилась эта идея, он горячо её поддержал, лично интересовался исследованиями и даже предложил установку, которая очень похожа на сегодняшний гибридный реактор. В этом был пророческий дар И.В. Курчатова. Исследования были поручены Л.А. Арцимовичу, под руководством которого проводились исследования именно в этом здании. А само слово «токамак» (сокращение от «тороидальная камера с магнитными катушками») придумал И.Н. Головин, первый заместитель И.В. Курчатова. Это слово используется во всем мире, это наш бренд - как спутник, матрешка, валенки или водка. — Первый токамак тоже появился в этих стенах? — Да, в 1959 г. Это была маленькая установка. А до 1965 г. в этом здании мы собрали еще девять установок различной конфигурации, на которых решались самые разные задачи. В 1968 г. здесь впервые в мире была получена плазма с температурой более 10 млн градусов. Никто не верил, что нам удалось достичь такой температуры. Предложили Л.А. Арцимовичу пригласить иностранную делегацию, чтобы это проверить. А Лев Андреевич был не только выдающимся ученым и организатором науки, но еще и очень смелым человеком. Холодная война, железный занавес - а он сумел добиться разрешения на приезд в эти сверхсекретные стены английских ученых. Настолько велик был его авторитет. — И что же? Они померили температуру плазмы? — Померили. Причем приехали на пяти огромных фурах, привезли свое измерительное оборудование. Тогда ведь вся диагностика была громоздкой. В результате измерений температура оказалась даже чуть выше, чем мы заявляли. После этого все сомнения были сняты - и токамак получил «зеленую улицу». Сегодня более 300 токамаков создано по всему миру. Но наш, повторю, уникален. — Наверное, к вам на работу приходят очень квалифицированные физики? — Сейчас вектор исследований перемещается в технологию, инженерию. Например, в ITER первая стенка должна будет меняться раз в пять лет. Там идут большие тепловые потоки до 20 МВт/м2, начинается эрозия материала, он попадает в плазму, поэтому без супер-профессиональных физиков и инженерных кадров не обойтись. За годы работы мы провели исследования по широкому спектру материалов, включая вольфрам, который сейчас предлагают наши европейские партнеры. Выясняется, что он не очень хорошо себя ведет при больших нагрузках. — То есть идет поиск идеального материала? — Да. Сейчас наши ученые предлагают литиевые технологии, которые позволяют перераспределять мощность на более широкие площади, не давая такую интенсивную нагрузку. Эти идеи также будут проверены на нашем токамаке. — Значит, опять настал момент, когда инженеры в стране нужны? — Да, это так. Токамак будет полностью управляться системой компьютеров, вся техника — самая современная и очень сложная. Физики — это наши главные генераторы идей, а инженеры - наша главная движущая сила. С ростом масштабов установок и их сложности эти специалисты должны быть самого высокого уровня. — Где вы их берёте? — Физики - базовая кафедра МИФИ, МФТИ, физфак МГУ. Инженерия - Бауманский институт, МЭИ, МАИ. Очень толковые ребята, других здесь не держат. — Вы ведь тоже в свое время пришли сюда из МГТУ им. Н.Э. Баумана? — Да, это моя альма-матер. Когда я пришел сюда больше 40 лет назад, мне казалось, что я попал в какую-то научную Мекку. Здесь широчайшее поле знаний, на котором, куда ни обратишься, тебе подскажут все, что ты хочешь узнать. Ты всё это впитываешь и с какого-то момента тоже становишься разносчиком знаний. Это поле знаний - Курчатовский институт.
— Такая атмосфера осталась? — Осталась. Мало того, в последние годы, я бы сказал, мы двинулись более широко, в разнообразных направлениях. М.В. Ковальчук такие традиции активно развивает. У нас по его инициативе сейчас представлены буквально все науки, даже гуманитарные. При этом активно развиваются и базовые атомные исследования, с которых когда-то начинался наш институт. Сегодня внимание к атомным и ядерным установкам и проводимым на них исследованиям огромное. Есть понимание на государственном уровне, что эти знания могут двигать общество вперед, и радостно, что именно Курчатовский институт этим занимается. Мне особенно приятно об этом говорить, потому что я проработал здесь, можно сказать, всю жизнь. Вопросы задавала: Наталия Лескова, источник: "Пресс-центр НИЦ "КИ" - со ссылкой на журнал "В мире науки"
Rewiever
Вопросы о "русском коллайдере"Среда, 27 Июля 2022 г. 23:12 (ссылка)
«Русский коллайдер»: зачем в Подмосковье в 80-е прорыли 21-километровый подземный кольцевой тоннель Анатолий Караваев, 26 июля 2022, https://ru.rt.com/lv4x Вначале нужно объяснить, как появился этот текст. Некоторое время назад вышеупомянутый автор связался со мной, представившись журналистом, и попросил ответить на ряд вопросов, связанных с историей работ по проекту УНК (ускорительно-накопительного комплекса протонов) в подмосковном Протвино. Он обратился именно ко мне, поскольку ознакомился с рядом моих прежних публикаций в СМИ по этой теме (так и сказал) - они собраны в моём блоге на Ли.ру. Почему бы и нет? - и наш телефонный разговор продолжился более часа. Хорошо - не за мой счёт... Гораздо больше времени заняли оцифровка записи с телефона и подготовка к печати. Тогда я и узнал, что публикация готовится для портала, который мне не совсем "по нутру" из-за его явной пропагандистской направленности - но в данном случае я дал согласие. Ведь правду о прошлом надо не только знать, но и отстаивать... Итак: В начале июля 2022 года в Швейцарии был перезапущен модернизированный Большой адронный коллайдер (БАК). Уже много лет в научном мире он прочно удерживает пальму первенства, во много раз превосходя по своим возможностям другие ускорители частиц. Между тем в 80-х годах прошлого века, ещё до создания БАК, в подмосковном Протвине начали реализовывать сопоставимый по масштабам проект самого мощного протонного ускорителя в мире — Ускорительно-накопительного комплекса (УНК). Однако судьба «русского коллайдера» оказалась печальной. После распада СССР строительство ещё несколько лет продолжалось, но в конце 1990-х из-за хронического безденежья от проекта окончательно отказались. На память о нём остался лишь прорытый под землёй кольцевой тоннель длиной 21 км. В рамках проекта «Незабытые истории» о судьбе УНК RT поговорил с физиком из Протвина Геннадием Дерновым. — Геннадий Николаевич, прежде чем поговорить о печальной судьбе ускорительно-накопительного комплекса, расскажите, когда и как появилась идея его создания? — Она вытекала из логики своеобразного соревнования физиков наиболее развитых стран в создании всё более мощных ускорителей заряженных частиц, позволявших проникать всё глубже в строение и свойства внутриатомного мира — микрокосмоса с его загадками и открытиями. Вообще, это интересный парадокс физической науки — чем на меньшие расстояния вглубь атома проникнуть, тем большие по размеру приборы приходится создавать, вплоть до самых грандиозных. Но цель — овладение энергией атома, — того стоит. Так вот, во второй половине XX века вперёд вырвались советские физики благодаря созданию ускорителя У-70 — протонного синхротрона на обычных магнитах с максимальной энергией 70 гигаэлектронвольт (ГэВ), с длиной орбиты частиц 1,5 км. Он был построен в Протвине за семь лет приповерхностно, то есть без тоннеля, и запущен в октябре 1967 года. — Видимо, к 50-летию советской власти? — Да. На протяжении последующих пяти лет он оставался крупнейшим по энергии ускорителем в мире, пока в 1972 году в США в тоннеле длиной более 6 км не был запущен в шесть раз более мощный протонный синхротрон. Аналогичная машина чуть позже была построена и Европейской организацией ядерных исследований (ЦЕРН) в Женеве. Наиболее сложные задачи фундаментальной физики в проведённых экспериментах решить не удавалось, и в Европе задумались над ещё более масштабным проектом, который в итоге вылился в строительство в 1983—1988 годах Большого электрон-позитронного коллайдера (LEP), для которого был вырыт 27-километровый тоннель, в котором было смонтировано два ускорительных тракта во встречных направлениях. Это позволяло осуществлять столкновения частиц, что удваивало эффект наблюдений, — отсюда и сам термин «коллайдер», от английского collide («сталкивать»). Вот к этому времени и в СССР начал реализовываться проект УНК, позже обозначаемый в прессе «русским коллайдером», хотя до создания собственно ускорителя в прорытом за десять лет 21-километровом кольцевом тоннеле дело, к сожалению, так и не дошло. — В чём было его отличие от LEP? — Отличие от женевского LEP состояло в том, что в УНК подразумевалось ускорять не электроны, а в 2 тыс. раз более тяжёлые протоны от действующего ускорителя У-70, что даёт гораздо более сильные физические эффекты при соударениях.Именно поэтому в тоннеле LEP физиками ЦЕРН в начале 1990-х было решено заменить всю ускорительную часть на использование адронов (так по-другому называют протоны), и эта работа привела к запуску в 2008 году LHC — Большого адронного коллайдера, до сих пор крупнейшего в мире. И только здесь была достигнута одна из научных целей — открыт так называемый бозон Хиггса, подтвердивший справедливость общепринятой теории строения материи. Но научный поиск требует движения дальше, и теперь в ЦЕРН приступают к проекту нового коллайдера FCC в новом, уже 100-километровом тоннеле. Вот такова картина хода событий в познании физических основ нашего мира, в которой проект УНК, пусть даже неосуществлённый, был одной из ступенек… — Как я понимаю, основная заслуга в продвижении идеи строительства УНК принадлежала известному учёному, академику Анатолию Логунову? — Во многом да, но он был не один. Его роль в проталкивании проекта УНК бесспорна, тем более что Анатолий Алексеевич (см.) был вице-президентом Академии наук, членом ЦК КПСС. Да и почти всё физическое сообщество страны было заинтересовано в том, чтобы вернуть пальму первенства, как было в первые годы после запуска У-70. На нём ведь было сделано несколько крупных открытий — к примеру, впервые удалось зарегистрировать созданные в столкновении на мишени античастицы. Но решение ряда физических фундаментальных проблем в картине микромира требовало более высоких энергий, и точно так же в создании проекта УНК и работе по его строительству участвовали многие научные институты страны и — без преувеличения ,— сотни предприятий. Поэтому работа над УНК с проектной энергией пучка в 3000 ГэВ постепенно шла, и уже в начале 1980-х годов всё начало реализовываться. По решению правительства строительные работы начались в 1983 году. Уже тогда было ясно, что задача будет решаться с использованием западных технологий. В тоннеле нужны были не только обычные «тёплые» магниты, которые работают при комнатной температуре. При таком размере кольца с их помощью ускорить протоны можно только до 600 ГэВ, что в пять раз меньше проектной мощности. Поэтому в проект УНК было заложено ещё два кольца с электромагнитами со сверхпроводящей обмоткой. У нас их тогда не делали, но со временем смогли решить эту проблему. В городе Усть-Каменогорске (сейчас он уже в Казахстане) на металлургическом заводе построили специальные линии, которые делали сам проводник - проволочки, которые скручивались в жгуты сверхпроводящего кабеля. Сборку этих магнитов наладили у нас в опытно-производственном институте. Общее число магнитных дипольных блоков в каждом кольце должно было составить порядка 2,5 тыс. штук, каждый весом около 10 т. — Как должен был работать УНК? — По проекту должны были построить два одинаковых по размеру сверхпроводящих кольцевых ускорителя, в которых протоны разгоняются во встречных направлениях. Первое кольцо с обычными «тёплыми» магнитами должно было принять пучок протонов через инжекционный канал из действующего ускорителя У-70 и поднять его энергию до промежуточного значения в 400—600 ГэВ. А далее второе кольцо с помощью сверхпроводящих магнитов должно было доводить её до конечной величины в 3000 ГэВ. С такой энергией значительно увеличился бы эффект взаимодействия частиц, ещё более интересная физика открылась бы. Ещё одно такое же сверхпроводящее кольцо ускоряло бы протоны во встречном направлении, что обеспечивало бы энергию соударений 6000 ГэВ и оправдывало бы термин «русский коллайдер». — А для чего вообще нужны магниты в коллайдере, почему они так важны? — Тоннель для коллайдера выполнен в форме кольца, чтобы пучки протонов в процессе ускорения могли поворачивать по кольцевой траектории, а не вылетали на стенки вакуумной камеры, и нужны поворачивающие дипольные магниты. Законы физики, открытые много лет назад Фарадеем и Максвеллом, работают при любых энергиях. В общем, открывавшиеся перспективы тогда очаровывали наших физиков, и работы в конце 1980-х у нас развернулись полным ходом. Для ускорения проходки тоннеля закупили два канадских проходческих комбайна фирмы LOVAT, которые одновременно не только бурили тоннели диаметром 5,5 м (это как одноколейная линия метро), но и сразу оставляли за собой бетонную облицовку с металлической обшивкой изнутри. Строительство кольца проходило на глубине от 20 до 60 м и почти не затрагивало территорию, находившуюся на поверхности земли, поскольку было сделано два десятка вертикальных шахт для обеспечения проходки. — А какая изначально сумма закладывалась на строительство УНК? — Весь проект оценивался примерно в миллиард ещё советских рублей, доллар во времена СССР стоил 60 копеек. — Когда по плану комплекс должны были запустить в эксплуатацию? — По проекту должны были запустить в середине 1990-х годов — имея в виду два ускорительных канала, третий добавить немногим позже, — тогда это получился бы самый мощный коллайдер в мире на несколько лет, до ввода LHC в Женеве. Но в то время обстановка в стране после событий 1991 года была непростая. Не только экономическая, но и политическая. Бюджет страны попал в руки парламентариев, они задавали тон при определении расходных статей. Там и у нас были лоббисты, которые поддерживали фундаментальную науку, считавшие, что с проектом УНК нужно продвигаться, бороться за пальму первенства. Были и противники затрат на фундаментальную науку, хотя в процентном отношении ко всему бюджету они и так хронически отставали от аналогичных затрат в развитых странах. Американцы тем временем приступили к осуществлению своего самого амбициозного суперпроекта SSC — протонного коллайдера в тоннеле длиной 87 км, то есть более чем втрое переплюнуть тот же европейский проект LHC. Прошли около 5 км в штате Техас, затраты стали уже стали исчисляться в миллиардах долларов, но в 1994 году проект был закрыт. Конгрессмены США посчитали, что даже для них он получается слишком дорогой, и лучше подключиться к проекту LHC. Мы остались один на один со своим УНК, на который в 1990-х годах средств едва хватало, чтобы закончить проходку тоннеля и выплачивать зарплату строителям. — Когда тоннель УНК был достроен? — Кольцо замкнулось в декабре 1994 года. Я как раз присутствовал на торжественной сбойке тоннеля, когда перемычка встречных проходок была пробита. Геодезисты и прочие специалисты не ошиблись, кольцо идеально замкнулось, можно было приступать к работам уже в самом тоннеле. Но средств на это хронически не хватало, даже утверждённые бюджетом цифры не выполнялись, так что перспективы становились всё более туманными. Тем более у проекта УНК были и серьёзные противники — например, антагонистом был известный академик Евгений Велихов, руководитель Курчатовского института. — А почему он был против? — Мне представляется, что особенность курчатовцев состоит в том, что они всегда считали себя лидерами отечественной физики. Может быть, во времена самого Игоря Васильевича Курчатова и «атомного проекта» это так и было. Кстати, именно он в 50-х годах настоял на необходимости строительства самого мощного в мире протонного ускорителя, а сам проект У-70 был подготовлен в Институте теоретической и экспериментальной физики (ИТЭФ). Возвращаясь к УНК... представлялось также какое-то противоборство личностей двух академиков, Логунова и Велихова, у каждого были свои научные интересы и задачи. А бюджет-то один... Дошло даже до того, что Велихов (см.)в интервью «Российской газете» в начале 1999 года заявил, имея в виду УНК, следующее: «Ещё 15 лет назад стало ясно, что Серпуховский ускоритель мы никогда не построим, тем не менее постоянно вбухивали туда огромные средства, отрывая их от действительно необходимых перспективных работ» (см. подробно здесь). И вот, к сожалению, он оказался прав в части прекращения работ по проекту УНК, поскольку именно в постдефолтном 1999 году в конце концов пришло общее понимание о необходимости закрытия проекта и консервации тоннеля. Хотя многие сожалеют — даже при тощем финансировании за несколько лет мы вполне могли хотя бы «тёплые» магниты поставить в этом тоннеле и поднять энергию У-70 почти в десять раз — с 70 до 600 ГэВ. Почти все необходимые магниты были уже изготовлены и к концу 1990-х годов завезены в институт. — Где они сейчас? — Они до сих пор лежат там невостребованные. Только парочку диполей пробным образом установили в тоннеле на штатном месте. — А сколько сейчас средств может понадобиться, чтоб доделать это кольцо и всё-таки запустить первую очередь? — Если считать от стоимости всего УНК, это относительно небольшие деньги, в нынешних ценах на монтаж «тёплых» магнитов нужно что-то около 200—300 млн нынешних рублей. Но дело в том, что за прошедшие годы оказалась серьёзно разрушена и другая инфраструктура объекта — дороги, шахтные стволы, которые служат для связи с поверхностью, и всё прочее. Так что суммарные затраты уже будут совсем другими, это миллиарды рублей. А главное — серьёзные научные задачи на энергиях первой очереди УНК уже практически решены в ускорительных центрах Европы и США. — Вы упомянули, что у советских учёных, помимо чисто научных задач, при задумке УНК было и стремление обогнать конкурентов, удерживать пальму первенства в мировой науке. Но что всё-таки было первостепенным? — Линия руководства заключалась в том, чтобы поддержать выход на передовые позиции: советское должно быть лучшим в мире. Эта линия чётко отслеживалась до тех пор, пока существовал Советский Союз. После этого пришло понимание, что лучшими мы уже не можем быть, поэтому хорошо бы иметь достойные машины. К сожалению, сейчас энергия ускорителя У-70 мало кого интересует, ну диссертации на нём ещё можно клепать, как говорится. Хотя он и спустя 55 лет после запуска остаётся самым мощным ускорителем в бывшем СССР. Глобально осваивается уже пройденный маршрут, производятся дополнительные исследования характеристик, в таблицу заносятся какие-то новые коэффициенты взаимодействия, но это не сулит серьёзных открытий. — Можно ли сказать, что если бы всё было нормально с нашей страной, достроили бы УНК, то он имел бы все шансы «отменить» Большой адронный коллайдер (см.) и стать центром притяжения мировой физической науки, каким сейчас является ЦЕРН? — Боюсь, что нет, потому что в ЦЕРН (традиционно) ведут самые современные научные исследования — интернет же в ЦЕРН придумали для обмена данными. — Судя по публикациям в СМИ середины 1990-х годов, тогда ещё у многих теплилась надежда, что всерьёз забуксовавший проект УНК удастся довести до конца. Была реальная возможность это сделать? — По личному указанию академика Логунова я тогда занимался, так сказать, пиар-кампанией этого проекта. Ездил в Госдуму, встречался с (некоторыми) депутатами, у меня, как и в целом по Институту, к тому времени уже укоренились убеждения о том, что надо достроить хотя бы то, что уже, в общем-то, у нас было в руках. То есть поставить «тёплые» магниты, сделать протонный ускоритель на 600 ГэВ, который свою делянку в мировом экспериментальном поле получил бы. Но даже эту маленькую часть общей задачи, до которой было совсем немного, противники проекта реализовать не дали. Оппоненты наши, как я уже говорил, в основном представляли Курчатовский институт, и в конце концов в этой схватке им удалось победить. — В 1994 году в федеральном бюджете отдельной строкой было предусмотрено 96 млрд рублей на строительство УНК. Читал, что реальные поступления составили менее половины от этой суммы. Почему не все деньги доходили? — То же, что и сегодня периодически происходит: украли. Конечно, не мы в ИФВЭ. Просто правительство постоянно, исходя из каких-то своих установок, корректировало те или иные расходы. То, что было намечено, отменялось, заменялось обещаниями возместить как-то, либо не обещали даже ничего. У нас даже были марши протестов, летом 2002 года шли от Пущино до Москвы пешком 3 дня. На площади у здания правительства РФ учёные митинг проводили. Туда пришли и биофизики, и от нас тоже были физики, потому что наука повсеместно тогда совсем на обочине государственного интереса находилась. — Сейчас, во всяком случае со стороны, кажется, что ситуация с государственным финансированием науки изменилась к лучшему. — Хотя промежуток с 2022 по 2031 год и объявлен в стране десятилетием науки и технологий, но для многих людей из научной среды в части зарплат это звучит как-то даже издевательски. У нас повсеместно создана мощная административная прослойка, на которую уходит очень много денег. Для примера — в протвинском ИФВЭ научные сотрудники, защитившие диссертации физики получают на порядок меньше, чем ряд работников высшего административного плана и других людей, которые непосредственно к научной деятельности отношения не имеют. — Встречалось мнение — в тех же СМИ, — что достраивать тоннель УНК было во многом вынужденной необходимостью — в случае если бы проект забросили сразу после развала СССР, ещё до окончания полного завершения кольца, то могли быть какие-то серьёзные экологические последствия. — Действительно, огромная полость в земле в водоносных горизонтах — это небезопасно. Неизвестно, как поведут себя целые слои грунтов, не провалится ли земля туда. Хотя она небольшая, но всё же. Но это скорее попытка получить поддержку в финансовом смысле. После того как кольцо достроено, полностью забетонировано с отдельными прорехами в северной его части и почти полностью металлом изнутри покрыто, опять же в северной части не всё выполнено, надо доработать. Там постоянно текут грунтовые воды. И поэтому та сумма, которая выделяется на обслуживание УНК до сих пор, это порядка 30 млн рублей в год, в основном идёт на откачку грунтовых вод. Там всё время работают насосы. Всё-таки затопление такого объекта является куда более опасным, чем пребывание в нынешнем виде. — А что будет, если УНК всё-таки затопит? — Никто точно не знает, но точно ничего хорошего. — Для прокладки подземного тоннеля УНК были куплены дорогостоящие канадские комплексы LOVAT. Что с ними стало после остановки строительства? — Их было минимум два. Один из них разобрали и перенесли в московское метро, где он и сейчас используется, насколько знаю. Другой вроде бы так и остался под землёй. У меня точных сведений нет. Какие-то специалисты говорят, что его вытаскивали вроде, но подтверждений я не находил. — Можно ли назвать УНК самым крупным проектом советской науки? — В СССР были более крупные проекты оборонного значения. Где-то на севере есть подземное сооружение более грандиозное, чем УНК. Там огромные тоннели вырыты, видимо, для подлодок. — Встречал выражение применительно к УНК — «памятник советской науки». Вы согласны с этим? — Ну, это не совсем правильно. Памятник — это когда есть душевная нужда прийти и поклониться. Судьба проекта УНК, как и всякая незавершёнка, — это свидетельство чьих-то ошибок. — По поводу окончательной консервации объекта. Вы упомянули, что в конце 1990-х появилось общее понимание, что реализовать его не удастся. Но когда именно вот эта неопределённость судьбы объекта вылилась в чётко принятое чиновничье решение? — В 1998 году министром науки и технологий недолго был Владимир Булгак. Насколько я знаю, он и подписал, хотя сам я документа этого не видел. Но произошедший тогда в августе дефолт очень сильно ударил по экономике и, по сути, окончательно похоронил УНК. — Подземное кольцо так или иначе есть, научных перспектив у него, как выясняется, уже нет, но можно ли его как-то использовать иначе? — Первое — этот тоннель надо окончательно достроить, там всё ещё есть опасность его затопления. — Какой участок незащищён? — 6—7 км в северной части подвержены проникновению воды, поскольку ещё при проведении работ по доводке облицовки тоннеля изнутри остались места с небольшими протечками грунтовых вод. Поначалу поставили временную откачку поступающей воды — на поверхность выведен небольшой ручеёк, впадающий в естественный водоём, — да так и осталось. Средства на откачку воды, на устранение «залазов» в тоннель любопытствующих диггеров, на охрану и электропитание шахтных надстроек — всё это выливается в пару-тройку десятков миллионов рублей в год. — Возможно ли такой гигантский объект как-то использовать в дальнейшем, пусть и не по прямому назначению? — Навскидку можно назвать три варианта. Во-первых, если тоннель будет хорошо герметизирован, там можно железнодорожные испытания проводить, как-никак 21 км рельсового пути — и никаких помех. В Минтрансе как-то выражали заинтересованность на этот счёт, но опять же «денег нет, держитесь». Во-вторых, тоннель можно использовать как индукционный накопитель электрической энергии, который можно задействовать в случае каких-то ЧП. — Нечто вроде запасного аккумулятора в масштабах региона? — Да. Вспомните 2005 год, когда из-за пожара на подстанции Чагино половина Подмосковья осталась без электричества. Таких бы последствий не было, если бы имелся такой накопитель, который может оперативно пополнять крупные электросети. — Насколько это реально? — Конкретный проект ИФВЭ по созданию такого накопителя на II инновационном форуме в 2007 году даже был представлен возглавлявшему тогда «Росатом» Сергею Кириенко (см. текст и фото). Думаю, он помнит… — Каков третий вариант? — Выращивание шампиньонов. — После железнодорожного полигона и гигантской батарейки звучит не так грандиозно. — Эти подземные пространства для этого отлично подходят. Температура там круглый год держится постоянная, в районе 18 градусов тепла, электричество есть. — Руководство ИФВЭ пыталось что-то из этих вариантов реализовать на практике? — Насколько я знаю, никаких поползновений со стороны руководства в этом плане нет. Они сидят тише воды ниже травы, сайт института сейчас — жалкое подобие прежнего, когда-то он был лучшим среди сайтов российских научных институтов. В целом ситуация не очень радужная: научное сообщество затихло — нет никакой полемики, обсуждения проектов каких-то, в наукограде Протвино практически перестал работать дом учёных в собственном смысле этого термина. — Как я понимаю, кроме самого 21-километрового тоннеля успели также построить несколько ответвлений и какие-то дополнительные подземные помещения? — Да, они для кабельного хозяйства, есть ответвления для перспективных каналов. Размах был широкий. В качестве расширения тоннеля на 50-метровой глубине был сделан один большой экспериментальный зал специально под российско- американский физический эксперимент «Нептун». Его объём составил около 10 тыс. кубометров. Когда работы в нём были окончены, шахтёры сыграли там в футбол с физиками. (см. - демо-макет отрезка тоннеля УНК по полному проекту на 6000 ГэВ, фото из журнала "Наука и жизнь" ) — С учётом нынешней ситуации, в том числе политической, туманными перспективами нашего будущего научного сотрудничества с Западом, есть ли какой-то смысл проект УНК как- то реанимировать по его прямому назначению? — Сейчас, наверное, ни один физик не скажет, что в этом есть необходимость. До сих пор все наши физики заряжены на обработку данных, полученных в ходе экспериментов в БАК. Наши учёные по договорам получали доступ к большим массивам данных, и часть их до сих пор находится в обработке. Думается, когда закончат с этими материалами, будут, возможно, дальше участвовать уже в новых проектах ЦЕРН. — Такой грандиозный подземный объект, как УНК, после остановки работ и консервации привлекал немало разного рода сталкеров, диггеров и прочих искателей приключений. Насколько легко туда было проникнуть и как обстоит дело сейчас? — Да, было слишком много точек входа на объект. Там же на всём протяжении кольца было несколько шахтных станций, через которые можно было спускаться в тоннель с поверхности, некоторые даже были оборудованы лифтами. Но, в принципе, и без них для диггеров это не такая проблема — спуститься на 40—60 м. Когда такие посетители совсем уж зачастили, было принято решение закрыть и заварить лишние двери. Тем более были и случаи хищений оборудования из некоторых наземных сооружений проекта УНК. В общем, эту проблему, можно сказать, решили. — А что видели те, кто спускался в УНК? Там же один сплошной тёмный тоннель. — Освещение как таковое там есть. Я с 2008 года в тоннеле не был и не знаю, как сейчас обстоят дела, но раньше с разрешения директора института его можно было включить во время экскурсий. (использованы также 4 фото из публикации в RT) Примечание публикатора: Поскольку ответы в ходе интервью наговаривались в основном "из головы", в опубликованном на портале RT тексте были некоторые неточности, которые я в этой републикации в минимальной степени поправил. Плюс добавил немного уточняющих ссылок и более относящихся к тексту фото (к примеру, на портале помещено аэрофото какого-то другого наукограда, не Протвино). Физика - науке точная, и что была бы наша жизнь без её плодов предшествовавших исследований? С ув. и пр. - Г. Дерновой
|
LiveInternet.Ru |
Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат О проекте: помощь|контакты|разместить рекламу|версия для pda |