Случайны выбор дневника Раскрыть/свернуть полный список возможностей


Найдено 74 сообщений
Cообщения с меткой

а.эйнштейн - Самое интересное в блогах

Следующие 30  »
Rewiever

Союз и противостояние учёного и государства

Среда, 13 Марта 2024 г. 19:20 (ссылка)


«Оппенгеймер» — фильм об ученых или о бомбе  


 


24Oscar_Merfi2 (314x181, 46Kb)    «Оппенгеймер» Кристофера Нолана — биографический фильм о Роберте   Оппенгеймере, физике-теоретике, «отце ядерной бомбы». В центре сюжета —   союз и противостояние Оппенгеймера с государством, трансформация его   личных убеждений и работа научной группы над атомным проектом. Через   судьбу великого ученого режиссёр Нолан проявляет общие вызовы, стоящие   перед исследователями и наукой, как ученые встраиваются в общество и   насколько зависят от него. 


   Образы главных героев в фильмах и сериалах про ученых нередко утрированы:   гениальный исследователь способен за минимальный срок собрать невероятное   устройство или решить сложнейшую задачу, едва взглянув на условие. Чтобы   выдержать эту почти божественную силу, персонаж становится изгоем, фриком или   вовсе сходит с ума — на этом строится конфликт. Для массового зрителя такой образ   науки комфортен, для ученых неактуален. «Оппенгеймер» немного не вписан в привычную картину: главный герой «очеловечен», встроен в общество и невольно меняет его. Таким образом, зритель может увидеть настоящие вызовы и бытовые проблемы, с которыми сталкиваются ученые: взаимоотношения с государством, ответственность за свои исследования и научную группу, этические границы науки.  


В «Оппенгеймере» на первом плане находятся не гениальные физические концепции (которые обычно разбирают на ляпы грамотные кино-обозреватели), а гомеостаз (процессы внутри и вокруг) научного сообщества. Режиссер фильма Кристофер Нолан не прячет главного героя в мире чудес физики за книжной полкой (как было в прошлом его фильме «Интерстеллар»). Роберт Оппенгеймер открыто сам прочтет о себе, пусть и на санскрите: «Теперь я смерть, разрушитель миров». 


 


Ученые и физика


Физики в фильме немного, но научная атмосфера передана неплохо. Есть милые исторические штрихи, например легендарный научный журнал Science в виде обычной газеты или ламповые часы, знакомые физтехам по лабораторным работам. Как и полагается, есть исписанные доски и формула цепной реакции. Мимолетом показаны все звезды тогда еще новой квантовой физики, сейчас уже давно классики: Альберт Эйнштейн, Нильс Бор, Вернер Гейзенберг, Энрико Ферми. Непривычно видеть их реальными людьми, а не названиями физических терминов: уровня Ферми, приближения Борна — Оппенгеймера, принципа неопределенности Гейзенберга. Великий Эйнштейн показан мудрым, но слабеющим стариком, который понимает, что его время ушло и науку двигают молодые: «Роберт, это ваше, а не моё».  


Сцены семинаров и обсуждений проекта показаны мимолетом, акцент делается на личных отношениях ученых. Несмотря на слаженную работу, между молодыми коллегами все же возникают противоречия и интриги, а сцена, где занятый Оппенгеймер игнорирует идеи Теллера — точь-в-точь общение физтеха с научным руководителем: «Тебе некогда обсуждать, ты превратился в политика». Мир физиков живой, полный рисков, сомнений, труда и трат: «Ученые обижены на всех, кто ставит под сомнения их суждения». В то же время показана практичность исследователей: расчеты показали, что на возгорание атмосферы «шансы почти нулевые», значит, эксперимент можно проводить — почти врачебный цинизм. Но если врачи берут на себя ответственность за жизнь одного человека, то ученые готовы тайно поручиться за всю планету, полагая, что она в смертельной опасности.


 


Государство


Самая очевидная линия сюжета — конфликт величайшего теоретика США с госмашиной, которая выведена в этом фильме бездушной, властной и требовательной. Каждый поступок и каждое личное убеждение Оппенгеймера спустя годы превратно трактуются «обвинителем», чуть ли не ставятся в вину. 


Государство сначала выполняет все прихоти физика: строит целый город Лос-Аламос (там до сих пор находится одна из крупнейших лабораторий США с мощными суперкомпьютерами), выделяет миллиарды на Манхэттенский проект. Однако после получения бомбы — одного из величайших достижений человечества — солдаты буднично грузят самое страшное оружие в истории в фургоны, а об ударе по Японии Оппенгеймер узнает из новостей, как обычный американец. 


Тем не менее конфликт чуть сложнее, чем использование ученых страной в обмен на их ум и с обещанием комфорта. Практически на каждом этапе у Оппенгеймера есть выбор: отказаться от друзей-коммунистов, носить военную форму, нарушать секретность, ускорять испытания, протестовать или согласиться с бомбардировкой. Ученый старается не изменить себе и в то же время следовать интересам страны, выполнять приказы. Получается ли у него найти баланс или срабатывает самоубеждение? Где проходят границы его личного выбора и силы обстоятельств? Кажется, Нолан, не скрывая симпатии к Оппи, все-таки оставляет своего Прометея прикованным к скале на растерзание орлу, гениям прощают не всё. 


 


Прометей 


24Oscar_sud2 (314x180, 47Kb)Килиан Мерфи отлично показывает трансформацию Роберта Оппенгеймера как из неуверенного энтузиаста в мировую знаменитость, осознающую и умело использующую свое влияние, так и из «взбалмошного позера» в мученика за убеждения: «Мне важно свободно мыслить, чтобы сделать наш мир лучше, зачем ограничивать себя догматом» и «Я считал себя сложнее, чем есть на самом деле».Карьерный путь ученого был практически идеален — лекции Бора и Гейзенберга, работа у Борна, затем возможность завезти в США диковинную квантовую физику, открыть кафедру, публикации в престижных журналах. Наконец, вершина карьеры — великое изобретение и руководство престижным университетом в Принстоне.


Осталось, казалось, только почивать на лаврах, но большой ученый — больше, чем ученый. Подвергая сомнению физические гипотезы, киношный Оппенгеймер, кажется, честно подвергает сомнению и собственную жизнь, принимая ответственность за бомбу, которую с него любезно предложил снять президент Трумэн. Физик «проталкивает контроль над вооружением» и «использует статус отца атомной бомбы, чтобы влиять на политиков». В этом поступке ученый по-настоящему становится Прометеем, обрекая себя, хоть и не на физические, но муки совести. Герой не теряет имущество, свободу, только признание и влияние, однако и этой жертвы можно было избежать, в очередной раз приняв изменившиеся правила игры и вновь подстроившись под систему.


Прометей дал людям огонь, чтобы они построили цивилизацию. Оппенгеймер дал людям огонь, чтобы они сохранили её. Но оба раза искушение власти оказалось сильнее благих намерений, огонь стал силой, которая подчиняет и уничтожает: «Мир не готов, бомба — не новое оружие, а новый мир. Вы американский Прометей, который дал им возможность уничтожить самих себя, за это вас зауважают». 


 


Бомба


24Oscar_timer2 (314x177, 51Kb)   Атомная бомба стала самым знаковым изобретением новой науки — квантовой   физики. В контексте фильма она сначала мыслилась панацеей, которая «достаточно   большая для конца войны, для конца всех войн», а затем превратилась в главную   угрозу цивилизации. Ученые реагируют по-разному на участие в «высвобождении   великой силы», один из друзей Оппенгеймера Исидор Раби (Нобелевский лауреат 1944   года) с трудом соглашается работать над проектом только после аргумента Роберта:   «Я не знаю, можно ли доверить бомбу нам, но нацистам нельзя». Кто-то, как Эрнест   Лоуренс (Нобелевский лауреат 1939 года), увлекается работой. Для физиков бомба — в   первую очередь открытие, эксперимент, подтверждающий правоту теории. Их   многолетний тяжелый труд оказывается не напрасным и, по словам военных,   позволяет закончить войну. Вопрос о применении ядерного оружия возникает   мимолетом лишь после смерти Гитлера, но Роберт Оппенгеймер одергивает сначала   бывших коллег, а затем молодежь, от политического и этического активизма: «Мы создали бомбу, но не нам решать, как её применить». 


Все разговоры о бомбе носят нарочито будничный характер, особенно исключение Киото из списка бомбардировки. Нолан сохраняет исторический контекст, но показывает его максимально сухо и поверхностно, лишая зрителя спасительного сострадания и вынуждая публику невольно оценивать события преимущественно из своего опыта и века. Как будто единственная навязанная авторская оценка — замедленная сцена взрыва, когда режиссер «заставляет» зрителя остаться один на один со своими переживаниями и личными контекстами. И если Оппенгеймер в фильме должен решить вопрос о своих убеждениях и муках совести, то вопрос этичности и границах научных экспериментов задается современному обществу, поскольку ученые в фильме решают вопрос всегда положительно, считая, что «это исследовательская работа, а не разработка оружия».


 


Эпилог


«Оппенгеймер» показывает непростой и живой мир ученых и поднимает сложные вопросы об ответственности исследователей, об их зависимости от государственной машины США, об этических границах изобретений. На эти вопросы гипотетически нет простых ответов, но практически ответ всегда «да». «Мое отношение к водородной бомбе сформировалось, когда стало очевидно, что мы используем любое созданное оружие», — отвечает Оппенгеймер во время судилища. 


24Oscar_benia3 (87x86, 8Kb)Переплетение амбиций политиков и жажды открытий ученых запускает цепную реакцию, вовлекая всё новых людей в неотвратимое движение прогресса и разрушая личности. Куда приведет это движение? Выразительными глазами Килиана Мерфи Нолан дает алармистский ответ, но, может, он не прав? 


 


Опубликовано: Илья Бения (см.), журнал МФТИ «За науку» - 27.02.2024
Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Пространство и время в микромире и в космосе

Четверг, 09 Октября 2003 г. 23:20 (ссылка)


Как пройти из одной вселенной в другую?


«Пункты перехода», возможно, надо искать на субъядерном уровне 


Из архива «НГ Наука»


12ngnPetroVag (200x267, 63Kb)Сколько измерений имеет такая странная штука, как «пространство-время»? До какого предела существует понятие «длины» в области малых промежутков? Как происходила эволюция Вселенной от Большого Взрыва до наших дней и вообще - был ли этот самый Большой Взрыв? Какова роль элементарных частиц в космологии и что следует из того недавно экспериментально установленного факта, что реликтовое излучение, оказывается, отнюдь не равномерно пронизывает нашу Вселенную?



Кто-то назовет попытку ответить на эти вопросы теоретической заумью современной физики. Да чего уж там, сам Альберт Эйнштейн, немало поспособствовавший изменению классических представлений о пространственно-временном континууме, как-то заметил: «Нормальный взрослый человек никогда не размышляет о пространстве и времени».


 


 В таком случае нормальных взрослых ученых, собравшихся в Институте физики высоких энергий (Протвино) на международную конференцию «Структура пространства-времени на субъядерном и космологическом масштабах», всех можно было назвать «ненормальными». По крайней мере для этих людей перечисленные выше вопросы стали, пожалуй, частью их обыденного сознания. Недаром в беседе с корреспондентом «НГ» заместитель заведующего Теоретического отдела ИФВЭ, доктор физико-математических наук Владимир Петров подчеркнул: «Идея этой конференции - проблемы, связанные со структурой пространства-времени. Что это такое, если говорить в «нормальных" терминах? Это число измерений пространства-времени, возможность увидеть это новое число измерений, скажем - пятое, шестое и так далее».


Другими словами, современная теоретическая физика пытается объяснить то, что невозможно даже представить. Взять хотя бы эту историю с числом измерений пространства-времени...


Если к привычному нам евклидову пространству (длина - ширина - высота) добавить еще одно измерение - время, получим четырехмерное пространство. Ну, с этим еще как-то наш мозг может справиться. Но «пятое, шестое и так далее» измерение... А ведь, согласно некоторым физическим моделям, существует две четырехмерные вселенные, разделенные пятым измерением. Из одной в другую вселенную может что-то «улетать», скажем, гравитация. В дополнительные измерения могут улетать частицы. И не только частицы, но и вполне макроскопические объекты. Мало того, в принципе любой из нас может в любую минуту нырнуть сквозь пространство-время: вот кто-то стоит рядом с вами, но может в следующее мгновение исчезнуть и в любое же мгновение снова появиться. Удивительно, но современные физические теории этого не запрещают.


«Конечно, это очень маленькая вероятность, но она в принципе не нулевая, - подчеркивает Владимир Петров. - Изучение подобных эффектов требует большой точности и больших энергий, которые будут получены на строящемся сейчас ускорителе LHC (Большой адронный коллайдер) в Европейском центре ядерных исследований в Женеве. Но даже на работающих ускорителях, например в Америке, физики пытаются проверить, существуют ли ограничения на количество дополнительных измерений пространства-времени. Сейчас наступило время, когда философия стала объектом экспериментального изучения. Двадцать лет назад тебя высмеяли бы, заведи ты разговор о визуализации пятого измерения».


 


Сам Владимир Алексеевич представил на конференции не менее интригующий доклад - «Некоммутативная теория пространства-времени». «Что это такое?» - интересуюсь у Петрова.


«Предположим, что мы производим измерение площади прямоугольника, - поясняет Владимир Петров. - Измерили стороны, перемножили - получили площадь. Причем измерять стороны можно в любой последовательности - площадь будет тот же самой. Но, оказывается, существуют такие наименьшие площади, ниже которых уже не все равно, в каком порядке измерять. Это и называется - некоммутативная геометрия. И все это согласуется с квантовой механикой».


Еще относительно недавно физики думали, что эти эффекты проявляются на так называемом расстоянии планковской длины, порядка 10-33 см. Но вот в теории многомерной гравитации, о которой тоже шла речь на конференции в Протвино, это расстояние может быть и меньше. Другими словами, основа основ физики, фундаментальная постоянная Планка, оказывается не такой уж и постоянной. А настоящая фундаментальная гравитационная масса - гораздо меньше. Но и она находится уже в пределах досягаемости современных ускорителей элементарных частиц, того же LHC. То есть физики-экспериментаторы готовы проверить самые фантастические модели своих коллег-теоретиков. Ученые подобрались к таким масштабам, где могут наблюдаться эти дополнительные измерения.


 


И действительно, масса электрона, например, 10-27 г - казалось бы, меньше не бывает. Оказывается, бывает, вернее, может быть...


В Релятивистской теории гравитации (РТГ), которую активно разрабатывает академик Анатолий Логунов с коллегами, переносчик гравитационного взаимодействия - гипотетический пока - гравитон должен иметь массу... 10-67 г. Попробуйте представить себе такой объект.


Впрочем, с другим объектом, Вселенной, дело обстоит ничуть не проще. Согласно РТГ, наша Вселенная бесконечна во времени и пространстве, к тому же еще и пульсирует - нынешний цикл расширения должен завершиться, эдак лет через 1000 миллиардов. Но и это еще не все. Вселенная, в которой мы живем, - плоская.


«Это один из базисных постулатов РТГ: Вселенная плоская и бесконечная, - рассказывает Владимир Петров. - Плоская - в геометрическом, самом простом смысле. Если не брать временную координату, то это обычное евклидово пространство. Этот подход может показаться примитивным, но, что самое удивительное, все экспериментальные данные пока согласуются с представлениями о Вселенной как о плоском пространстве».


2003semihep2 (322x207, 80Kb)


«А как же тогда быть с известным наблюдением Эддингтона, который в 1919-м экспериментально подтвердил, что лучи света отклоняются, попадая в поле тяготения Солнца? - спрашиваю у Петрова. - И объяснен этот факт был именно тем, что масса искривляет геометрию пространства, что и предсказывалось в общей теории относительности».


/На фото публикатора : В.Петров первый слева, А.Ваганов первый справа во 2-м ряду /


«Это наблюдение ничему не противоречит, - поясняет Владимир Алексеевич. - Ведь на все это можно смотреть по-разному. Например, луч света движется в плоском пространстве и под силовым действием заворачивает. Я вот иду и заворачиваю (меня, допустим, магнит притягивает). Но я же не говорю, что пространство неевклидово. В РТГ, во всем, что не касается распространения самой гравитации, дело обстоит очень похоже с общей теорией относительности. Просто существует двойственность в описании движения вещества: его можно описывать в искривленном римановом пространстве, а можно и в плоском, но под действием сил».


 


Выходит, прав был известный российский физик Юрий Манин, который однажды заметил: «Геометрия есть консервант скоропортящихся физических идей». Современная теоретическая физика, несмотря на всю свою "замороченность», стремится к наглядности. «Если раньше главный вопрос для физиков был, из чего состоит материя - атомы, ядро и т.д., то теперь главный вопрос: из чего состоит пространство и время? - резюмирует Владимир Петров. - Всё, что раньше было безумным и фантастическим, включая машину времени, сейчас исследуется на абсолютно серьезном уровне». 


 


Опубликовано: Андрей Ваганов«НГ Наука» №12, 2003


Примечание публикатора: Более полный рассказ о состоявшемся совещании теоретиков см.   здесь

Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество
Rewiever

Пролить свет на тёмную составляющую

Среда, 02 Июля 2008 г. 11:08 (ссылка)


Релятивистская теория гравитации предполагает


кардинальное решение проблемы чёрных дыр




    Одна из проблем современной физики – пресловутые "чёрные дыры". Если они существуют – какова их физическая сущность?


    В этом отношении сложилась довольно парадоксальная ситуация. Исследователи, наблюдающие дальний космос, время от времени заявляют об обнаружении новых объектов, идентифицируемых если не как чёрные дыры, то как "кандидаты в чёрные дыры" – экзотические порождения звездной эволюции, поглощающие в себя всё и не выпускающие наружу ничего. А исследователи микромира, готовящие к экспериментам на запускаемом в этом году в Женеве сверхмощном ускорителе LHC, не исключают обнаружения в столкновениях внутриядерных частиц при гигантских энергиях эффекта возникновения мини-чёрных дыр. Впрочем, физики успокаивают: они же «испарятся», не причиняя вреда.  (422x480, 11Kb)

В то же время до сих пор не существует строгих научных доказательств как реального существования чёрных дыр в астрофизике и космологии, так и возможного их возникновения в физике высоких энергий на ускорителях частиц.





Начало загадке чёрных дыр было положено в 1916 году, когда немецкий ученый Карл Шварцшильд, работая с эйнштейновскими уравнениями, ввел понятие гравитационного радиуса.

С течением времени (счет идет на миллиарды лет) вещество звезды вырабатывается в термоядерных реакциях, температура снижается, и звезда начинает за счет собственной гравитации коллапсировать, ужиматься. Если масса сжимающихся звезд не превышает некоторой критической величины, равной приблизительно трем солнечным массам, – они превращаются в компактные и сравнительно холодные (тысячи градусов вместо миллионов) нейтронные звезды, или белые карлики.





В ином случае оставшееся вещество как бы уходит под «гравитационный радиус», а экс-звезда превращается в объект без четкой физической поверхности. Есть лишь условное понятие «горизонт событий», за пределы которого не может вырваться ни единый квант света – только поглощение всего приходящего извне. В общем, чёрная дыра (название пустил в обиход на одной из конференций в 1967 году недавно скончавшийся в возрасте 96 лет американский теоретик Джон Уилер, работавший с Эйнштейном).



Постепенно доминирующей (но не исключающей и других представлений) стала точка зрения, что из эйнштейновской общей теории относительности (ОТО) следует только такое пространство-время, которое начинается в Большом взрыве и заканчивается в чёрных дырах. На начало нынешнего века астрофизическим сообществом признаются в качестве кандидатов в чёрные дыры около двух сотен объектов. И это ничтожно мало по сравнению с их количеством в наблюдаемой Вселенной, которое должно было бы наличествовать по сценарию ОТО. Но сценарий этот не единственный.





Научный руководитель ГНЦ «Институт физики высоких энергий», академик Анатолий Логунов с коллегами уже много лет разрабатывает так называемую Релятивистскую теорию гравитации (РТГ). Главный итог этой работы – создание непротиворечивой физической теории пространства-времени, альтернативной по отношению к ОТО Альберта Эйнштейна. РТГ в отношении эволюции астрофизических объектов исключает появление чёрных дыр.



 (200x297, 15Kb)      Что вместо этого?

  Возвращаясь к примеру с угасающей звездой достаточной массы, РТГ   предполагает (и приводит соответствующие доказательства), что процесс коллапса   вовсе не приводит к ее обязательному превращению в чёрную дыру. Напротив,   в РТГ описаны механизмы, благодаря которым возникают и усиливаются   эффективные полевые силы отталкивания, которые останавливают процесс   сжатия материи. Затем они же обеспечивают начало процесса расширения.



  Таким образом, предложен своеобразный «механизм саморегулирования»   массивных объектов в гравитационном поле полевой природы. В основе его –   интерпретация гравитации как физического поля, обладающего энергией и   импульсом.

   Изучение и развитие этого механизма может существенно изменить картину   представлений о глубинной взаимосвязи материи, пространства и времени в   астрофизике и физике высоких энергий.

   Вместо общепринятой гипотезы эволюции Вселенной, начинающейся с так называемого Большого взрыва, произошедшего 14 млрд. лет назад, предлагается однородная и изотропная плоская Вселенная, развивающаяся циклически от некоторой максимальной плотности до некоторой минимальной, и наоборот. При этом «расширение Вселенной», этот вполне наблюдаемый эффект, связано не с относительным движением вещества, а с изменением гравитационного поля со временем.



   Кроме того, в РТГ делается вывод о том, что во Вселенной должна существовать большая скрытая масса, не сводящаяся к наблюдаемой материи. Этот вывод совпадает с открытиями в радиоастрономии, сделанные в последнее десятилетие, которые подвели ученое сообщество к признанию того, что вся прежняя физика имела дела лишь с малой частью вещества, распределенного во Вселенной. Привычная нам, «барионная» материя, по оценкам, составляет не более 5% вещества Вселенной. Еще 25% массы Вселенной составляют частицы неизвестной пока природы – так называемая «тёмная материя». И остальные 70% Вселенной приходятся на загадочную темную энергию, которую можно интерпретировать как неизвестное пока состояние вещества.



    Опубликованные гипотезы сводятся к тому, что темную материю могут составлять еще не открытые тяжелые частицы с массой, на два-три порядка превышающей массу протона. Именно поэтому физики возлагают большие надежды предстоящие эксперименты на LHC, которые могут пролить свет на темные составляющие Вселенной.







 Опубликовано«Независимая Газета» - 28 мая 2008 г.



Примечание: Публикация подготовлена по материалам личных встреч с А.А, Логуновым и знакомства с его работами   


Метки:   Комментарии (0)КомментироватьВ цитатник или сообщество

Следующие 30  »

<а.эйнштейн - Самое интересное в блогах

Страницы: [1] 2 3 ..
.. 10

LiveInternet.Ru Ссылки: на главную|почта|знакомства|одноклассники|фото|открытки|тесты|чат
О проекте: помощь|контакты|разместить рекламу|версия для pda