-Фотоальбом

Посмотреть все фотографии серии  * Казаки - Сорумская Вольница *
* Казаки - Сорумская Вольница *
14:17 19.11.2021
Фотографий: 168
Посмотреть все фотографии серии Поездочки
Поездочки
18:29 04.12.2019
Фотографий: 772
Посмотреть все фотографии серии ЛытБыр
ЛытБыр
07:00 05.11.2019
Фотографий: 684

 -Всегда под рукой

 -Я - фотограф

Сорум 64°13'24'' с. ш. 69°03'32'' в. д.

Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.Сорум 64°13'24'' с. ш. 69°03'32'' в. д.

 -Настольные игры онлайн

Место
1.
2.
3.
4.
5.
6.
7.
8.
9.
.
Очки
6805
3399
2845
1315
1020
869
830
729
605
0

 -Подписка по e-mail

 

 -Поиск по дневнику

Поиск сообщений в Епанделин

 -Сообщества

Участник сообществ (Всего в списке: 4) Лиру_Ставрополь pekari Tomsik verbirol
Читатель сообществ (Всего в списке: 4) Лиру_Ставрополь Чортова_Дюжина попробуй_АссилЬ verbirol

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 23.10.2003
Записей: 14682
Комментариев: 118631
Написано: 192320


Спектр... что бы напомнить кое кому природу света...

Четверг, 06 Января 2022 г. 12:30 + в цитатник
Цитата сообщения Епанделин Спектр... что бы напомнить кое кому природу света...

 Murzilka_Inc

Спектр (лат. spectrum от лат. specter — виде́ние, призрак) в физике — распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой[источник не указан 492 дня]. Обычно под спектром подразумевается электромагнитный спектр — спектр частот (или, что то же самое, энергий квантов) электромагнитного излучения.

В научный обиход термин спектр ввёл Ньютон в 1671—1672 годах для обозначения многоцветной полосы, похожей на радугу, которая получается при прохождении солнечного луча через треугольную стеклянную призму


Исторически раньше всех прочих спектров было начато исследование оптических спектров. Первым был Исаак Ньютон, который в своём труде «Оптика», вышедшем в 1704 году, опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения, и объяснил их природу, показав, что цвет есть собственное свойство света, а не вносятся призмой, как утверждал Роджер Бэкон в XIII веке. Фактически, Ньютон заложил основы оптической спектроскопии: в «Оптике» он описал все три используемых поныне метода разложения света — преломление, интерференцию и дифракцию, а его призма с коллиматором, щелью и линзой была первым спектроскопом.



Следующий этап наступил через 100 лет, когда Уильям Волластон в 1802 году наблюдал тёмные линии в солнечном спектре, но не придал своим наблюдениям значения. В 1814 году эти линии независимо обнаружил и подробно описал Фраунгофер (сейчас линии поглощения в солнечном спектре называются линиями Фраунгофера), но не смог объяснить их природу. Фраунгофер описал свыше 500 линий в солнечном спектре и отметил, что положение линии D близко к положению яркой жёлтой линии в спектре пламени.



В 1854 году Кирхгоф и Бунзен начали изучать спектры пламени, окрашенного парами металлических солей, и в результате ими были заложены основы спектрального анализа, первого из инструментальных спектральных методов — одних из самых мощных методов экспериментальной науки.


В 1859 году Кирхгоф опубликовал в журнале «Ежемесячные сообщения Берлинской академии наук» небольшую статью «О фраунгоферовых линиях». В ней он писал:







Спектроскоп Кирхгоффа-Бунзена, Annalen der Physik und der Chemie (Poggendorff), Vol. 110 (1860).





В связи с выполненным мною совместно с Бунзеном исследованием спектров окрашенных пламен, благодаря которому стало возможным определить качественный состав сложных смесей по виду их спектров в пламени паяльной лампы, я сделал некоторые наблюдения, приводящие к неожиданному выводу о происхождении фраунгоферовых линий и позволяющие по ним судить о вещественном составе атмосферы Солнца и, возможно, также ярких неподвижных звезд…



…окрашенные пламена, в спектрах которых наблюдаются светлые резкие линии, так ослабляют проходящие через них лучи того же света, что на месте светлых линий появляются темные, если только за пламенем находится источник света достаточно большой интенсивности, в спектре которого эти линии обычно отсутствуют. Я далее заключаю, что темные линии солнечного спектра, не обязанные своим появлением земной атмосфере, возникают из-за присутствия в раскаленной атмосфере Солнца таких веществ, которые в спектре пламени на том же самом месте дают светлые линии. Следует принять, что совпадающие с D светлые линии в спектре пламени всегда вызываются находящимся в нём натрием, поэтому темные линии D солнечного спектра позволяют заключить, что в атмосфере Солнца имеется натрий. Брюстер нашёл в спектре пламени селитры светлые линии на месте фраунгоферовых линий А, а, В; эти линии указывают на присутствие калия в солнечной атмосфере








Оптический линейчатый эмиссионный спектр азота



Примечательно, что эта работа Кирхгофа неожиданно приобрела и философское значение: ранее, в 1842 году, основоположник позитивизма и социологии Огюст Конт в качестве примера непознаваемого привёл именно химический состав Солнца и звёзд:





Мы понимаем, как определить их форму, расстояния до них, их массу и их движения, но мы никогда не сможем ничего узнать об их химическом и минералогическом составе



Огюст Конт, «Курс позитивной философии», Книга II, Глава I (1842)



Работа Кирхгофа позволила объяснить природу фраунгоферовых линий в спектре Солнца и определить химический (или, точнее, элементный состав) его атмосферы.


Фактически, спектральный анализ открыл новую эпоху в развитии науки — исследование спектров как наблюдаемых наборов значений функции состояния объекта или системы оказалось чрезвычайно плодотворным и, в конечном итоге, привело к появлению квантовой механики: Планк пришёл к идее кванта в процессе работы над теорией спектра абсолютно чёрного тела.



В 1910 году были получены первые неэлектромагнитные спектры: Дж. Дж. Томсон получил первые масс-спектры, а затем в 1919 году Астон построил первый масс-спектрометр.



С середины XX века, с развитием радиотехники, получили развитие радиоспектроскопические, в первую очередь магнито-резонансные методы — спектроскопии ядерного магнитного резонанса (ЯМР-спектроскопия, являющаяся сейчас одним из основных методов установления и подтверждения пространственной структуры органических соединений), электронного парамагнитного резонанса (ЭПР), циклотронного резонанса (ЦР), ферромагнитного (ФР) и антиферромагнитного резонанса (АФР).


Другим направлением спектральных исследований, связанным с развитием радиотехники, стала обработка и анализ первоначально звуковых, а потом и любых произвольных сигналов.



Murzilka_Inc



Типы спектров






Два представления оптического спектра: сверху «естественное» (видимое в спектроскопе), снизу — как зависимость интенсивности от длины волны. Показан комбинированный спектр излучения солнца. Отмечены линии поглощения бальмеровской серии водорода.




По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.


Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров — спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров — спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.



Другим критерием типизации спектров служат физические процессы, лежащие в основе их получения. Так, по типу взаимодействия излучения с материей, спектры делятся на эмиссионные (спектры излучения), адсорбционные (спектры поглощения) и спектры рассеивания.




Спектры произвольных сигналов: частотное и временное представления






Спектр ядерного магнитного резонанса (1H), полученный методом Фурье-спектроскопии ЯМР. Красным показан исходный временной спектр (интенсивность-время), синим — частотный (интенсивность-частота), полученный Фурье-преобразованием.



В 1822 году Фурье, занимавшийся теорией распространения тепла в твёрдом теле, опубликовал работу «Аналитическая теория тепла», сыгравшую значительную роль в последующей истории математики. В этой работе он описал метод разделения переменных (преобразование Фурье), основанный на представлении функций тригонометрическими рядами (ряды Фурье). Фурье также сделал попытку доказать возможность разложения в тригонометрический ряд любой произвольной функции, и, хоть его попытка оказалась неудачна, она, фактически, стала основой современной цифровой обработки сигналов.



Оптические спектры, например, Ньютоновский, количественно описываются функцией зависимости интенсивности излучения от его длины волны f(λ) или, что эквивалентно, от частоты f(ω), то есть функция f(ω) задана на частотной области (frequency domain). Частотное разложение в этом случае выполняется анализатором спектроскопа — призмой или дифракционной решеткой.


В случае акустики или аналоговых электрических сигналов ситуация другая: результатом измерения является функция зависимости интенсивности от времени j(τ), то есть эта функция задана на временной области (time domain). Но, как известно, звуковой сигнал является суперпозицией звуковых колебаний различных частот, то есть такой сигнал можно представить и в виде «классического» спектра, описываемого f(ω).



Именно преобразование Фурье однозначно определяет соответствие между j(τ) и f(ω) и лежит в основе Фурье-спектроскопии.



Математика В математике употребляются термины спектр оператора, спектр матрицы и спектр кольца. Также существует кепстр — спектр спектра. Теория сигналов В теории сигналов, спектр — это сумма гармоник. Спектр — разложение сигнала на более простые базисные ортогональные функции Фармакология В фармакологии употребляется термин «спектр действия» препарата или медикамента.

Физика элементарных частиц

В физике элементарных частиц употребляются такие термины как:




Murzilka_Inc


Murzilka_Inc


 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку